期刊文献+

基于深度增强学习的个性化动态促销 被引量:1

Personalized Dynamic Promotion Based on Deep Reinforcement Learning
原文传递
导出
摘要 随着大数据技术和应用的普及,数据驱动的决策优化已成为企业科学管理的发展趋势。本文提出了一种基于深度增强学习的策略框架,整合企业领域知识解决收益管理中复杂的动态促销问题。基于一家在线生鲜零售商随机抽取的2012名匿名消费者自注册开始的长期消费行为(共计363946条消费记录),以及该零售商的历史收益管理策略数据,结合仿真方法,本文构建了增强学习环境下的个性化动态促销模型并进行检验。结果发现,本研究提出的新策略可以有效地提升企业面向市场的收益管理能力,提高企业约18%的长期收益。数据驱动的个性化促销实现了长短期促销策略的动态平衡,从而帮助企业以更低的投入和对顾客更少的干预实现更高的回报。研究结论对数智技术应用于企业收益管理优化和混合智能方法具有显著的理论和实践意义。 The advance in big data technology has made data-driven optimization a popular tool in operations management.The paper develops a deep reinforcement learning approach that integrates domain knowledge with a forward-looking perspective to solve the complex dynamic promoting problem in revenue management.We test the validity of the approach using a total of 363,946 consumption records from 2,012 randomly selected anonymous consumers from an online fresh food retailer.Simulation results demonstrate that our approach increases the firm's revenue by 18%compared with static strategies.The approach also dynamically balances long-term and short-term promoting strategies,helping the firm achieve higher returns with lower investment and less customer intervention.Our approach and findings have important implications for dynamic promoting and revenue management and the development of hybrid intelligence methods.
作者 张诚 王富荣 郁培文 邓皓文 Zhang Cheng;Wang Furong;Yu Peiwen;Deng Haowen(School of Management,Fudan University;School of Economics and Business Administration,Chongqing University)
出处 《管理世界》 CSSCI 北大核心 2023年第5期160-172,共13页 Journal of Management World
基金 国家自然科学基金项目(基金号:91846302、71871065、71722008)的资助。
关键词 数据驱动的优化 深度增强学习 收益管理 动态促销 前瞻性视角 data-driven optimization deep reinforcement learning revenue management dynamic promoting forward-looking perspective
  • 相关文献

参考文献9

二级参考文献117

  • 1张黎,范亭亭,王文博.降价表述方式与消费者感知的降价幅度和购买意愿[J].南开管理评论,2007,10(3):19-28. 被引量:38
  • 2Woolf Brian, 1996,Customer Specific Marketing, Teal Books.
  • 3Chen H., Chiang R., Storey V., 2012, "Business Intelligence and Analytics: From Big Data to Big Impact", Management Informa- tion Systems Quarterly, 36 (4), pp. 1165- 1188.
  • 4Frankel F., Reid R., 2008, "Big Data: Distilling Meaning from Data",Nature,455 (7209), pp.30.
  • 5Gantz J., Reinsel D., 2011, "Digital Universe Study: Extract- ing Value from Chaos",IDC Go-to-Market Services.
  • 6Hey T., Tansley S., Tolle K., 2009, "The Fourth Paradigm: Data-Intensive Scientific Discovery" ,Microsoft.
  • 7Manyika J., Chui M., Brown B. et al., 2011, Big Data: The Next Frontier for Innovation, Competition and Productivity, Institute M. G. McKinsey & Company.
  • 8Science Staff, 2011, "Challenges and Opportunities", Science, 331 (6018), pp.692-693.
  • 9Weihrich H., Koontz H., 2005, Management: A Global Per- spective, Singapore: McGraw-Hill.
  • 10Wren D. A. ,Bedeian A. G. ,2009, The Evolution of Manage- ment Thought, (7),John Wiley & Sons,Inc,2009.

共引文献1318

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部