期刊文献+

小曲率凹面光学玻璃的磁性混合流体精密抛光 被引量:1

Magnetic compound fluid polishing of concave optical glass with small curvature
下载PDF
导出
摘要 为实现小曲率凹球面光学玻璃的高效超精密抛光,充分发挥旋转磁场下磁性混合流体兼具黏度和粒子动态分布的特点,提出了一种新型半球头抛光装置。使用Ansoft Maxwell仿真分析轴向充磁圆柱永磁体及其上方分别加装平面铁块和凹面铁块3种磁源结构下的磁场分布,发现加装凹面铁块能强化“边缘效应”,获得更集中分布的大磁场区,进一步仿真优化磁体尺寸和偏心距。比较不同抛光液组分和磁体偏心距下的磁性混合流体行为,确定了抛光液的最佳组分以及磁体偏心距。最后,对曲率半径为15.4 mm、中心深度为2.24 mm的凹球面K9玻璃进行抛光实验,90 min后,面形精度RMS由0.719μm降低至11.7 nm,表面粗糙度Ra由0.552μm降低至9.656 nm。新型抛光装置能够实现小曲率凹球面工件的高效纳米级抛光。 To realize efficient ultra-precision polishing of concave spherical optical glass with small curvature,a hemispherical head polishing device based on magnetic compound fluid(MCF)with a high apparent viscosity and stable distribution is proposed.First,the magnetic-field distribution of three different magnetic sources(axial magnetized cylindrical permanent magnet with a planar iron board and concave iron board installed above it)is simulated with the use of ANSOFT Maxwell.It is found that the addition of the concave iron board can strengthen the corner effect,and the magnetic field can be more concentrated.The dimensions of the magnetic sources and magnet eccentricity are optimized according to the simulation results.Second,by observing and comparing the behavior of the MCF slurry with different compositions and magnet eccentricities on the polishing head,the composition of the MCF slurry and magnet eccentricity are determined.Finally,a polishing experiment is performed on the concave spherical K9 glass workpiece with a curvature radius of 15.4 mm and center depth of 2.24 mm using the optimized polishing solution and self-made polishing device.Following 90 min of polishing,the root-mean-square(RMS)of the workpiece surface is reduced from 0.719μm to 11.7 nm,and the surface roughness(Ra)is reduced from 0.552μm to 9.656 nm.It is verified that the designed polishing device can achieve efficient nanoscale polishing of concave spherical workpieces with small curvature.
作者 陆政凯 郭会茹 吴勇波 LU Zhengkai;GUO Huiru;WU Yongbo(Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology,Wuhan 430070,China;Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen 518005,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2023年第9期1314-1324,共11页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.51805394,No.61503290)。
关键词 超精密加工 磁性混合流体 小曲率凹球面 边缘效应 磁场优化 抛光液行为 ultra-precision fabrication magnetic compound fluid concave spherical surface with small curvature corner effect magnetic field optimization behavior of polishing fluid
  • 相关文献

参考文献7

二级参考文献69

  • 1刘红婕,王凤蕊,耿峰,周晓燕,黄进,叶鑫,蒋晓东,吴卫东,杨李茗.荧光成像技术无损探测光学元件亚表面缺陷[J].光学精密工程,2020,28(1):50-59. 被引量:15
  • 2张峰,张斌智.磁流体辅助抛光工件表面粗糙度研究[J].光学精密工程,2005,13(1):34-39. 被引量:24
  • 3郑永成,王洋,何建国,黄文.基于磁场分割的磁导计算与磁路设计[J].机械与电子,2006,24(7):11-13. 被引量:12
  • 4LAMBROPOULOS J C,XU S, FANG T, et al.. Twyman effect mechanics in grinding and microgrinding[J]. Appl. Opt., 1996,35:5704-5713.
  • 5SURATWAI.A T, WONG L, MILLER P, et al.. Sub-surface mechanical damage distribution during grinding of fused silica[J]. J. Non-cryst. Solids. , 2006,352(52-54) :5601-5617.
  • 6MENAPACE J A, DAVIS P J, STEELE W A, et al.. MRF applications: measurement of processdependent subsurface damage in optical materials using the MRF wedge technique[J]. SPIE, 2005, 5991:39-49.
  • 7SABIA R, STEVENS H J,VARNER R. Pitting of a glass-ceramic during polishing with cerium oxide [J]. J. Non-cryst. Solids., 1999,2,19:123-130.
  • 8ERIN J,GOLINI D. Surface interactions between nanodiamonds and glass in Magnetorheological Finishing (MRF)[D]. New York: University of Rochester, 2007.
  • 9HALLOCK B, DUMAS P, SHOREY A, et al.. Recent advances in deterministic, low-cost finishing of sapphire windows[J]. SPIE, 2005,5786: 154- 164.
  • 10CARR J W, FEARON E, SUMMERS L J, et al.. Subsurface damage assessment with atomic force microscopy [C]. Lawrence Livermore National Laboratory (LLNL) Report, 1999,April 16 : 1-4.

共引文献72

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部