摘要
对于任何一个图G的正常点着色φ而言,如果对于任何一个非孤立点x,存在一个颜色c使得|φ^(-1)(c)∩N_(G)(x)|是奇的,则φ被称为图G的奇着色.如果一个图能画在一个平面上,使得每一边至多被另一条边相交,则这样的图被称为1-平面图.证明了任何一个1-平面图是奇21-着色的,改进了最近由Cranston,Lafferty和Song得到的界23.
A proper vertex coloringφof a graph G is said to be odd if for each non-isolated vertex x∈V(G)there exists a color c such that|φ~(-1)(c)∩N_G(x)|is odd.A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge.We prove every 1-planar graph admits an odd 21-coloring.This improves a recently obtained bound,23,due to Cranston,Lafferty and Song.
作者
郭春强
吴宝音都仍
GUO Chunqiang;WU Baoyindureng(School of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830017,China)
出处
《新疆大学学报(自然科学版)(中英文)》
CAS
2023年第3期267-273,共7页
Journal of Xinjiang University(Natural Science Edition in Chinese and English)
基金
supported by National Natural Science Foundation of the People’s Republic of China“Research on the domination of regular graphs”(12061073)。
关键词
正常着色
奇着色
1-平面图
proper coloring
odd coloring
1-planar graph