期刊文献+

基于LiDAR点云的电力线自适应密度聚类提取 被引量:3

Adaptive density clustering for extracting power line based on LiDAR point clouds
下载PDF
导出
摘要 目前,高压电力线巡检效率已不能满足新时期电力系统智能化管理的要求。通过深入探讨密度聚类法在机载LiDAR电力线点云提取中存在的弊端,给出自适应—密度聚类解决方案。实测青海省某电力走廊机载LiDAR点云数据,借助Visual Studio 2010 C++开发环境,编制自适应—密度聚类等相关处理程序,对自适应密度聚类方案的电力线点云提取、电力线三维抛物线的拟合进行测试与精度评定,结果表明:①自适应—密度聚类方案提取准确率达99.96%,电力线拟合最小残差0.220m,最大拟合残差0.252m,平均拟合残差0.232m;②自适应—密度聚类方案一次便可成功提取电力线,较好地规避了密度聚类法中多次试探邻域半径r_(Eps)与密度阈值p_(MinPts)等初始参数的赋值问题,大大提高了基于机载LiDAR点云数据的电力巡线工作效率,可应用于电力行业的实际工作中。 At present,the inspection efficiency of high-voltage power line cannot meet the requirements of intelligent management of power system in the new era.By deeply analyzing the disadvantages of density clustering method in power line extraction with airborne LiDAR point clouds,an adaptive density clustering solution is given.Based on the measured airborne LiDAR point clouds of a power corridor in Qinghai Province,with the help of Visual Studio 2010 C++development environment,relevant processing programs such as adaptive density clustering are compiled to test and evaluate the accuracy of power line extraction and power line three-dimensional parabola fitting.The results show that:The extraction accuracy of the adaptive density clustering scheme is 99.96%,the minimum residual of power line fitting is 0.220m,the maximum is 0.252m,and the average is 0.232m;②The adaptive density clustering scheme successfully extracts the power line at one time,which avoids the assignment of initial parameters such as neighborhood radius and density threshold in the density clustering method for many times,greatly improves the work efficiency,and can be applied to the actual work of power industry.
作者 武永彩 Wu Yongcai(School of Urban Construction,Xi'an Siyuan University,Xi'an 710038,China;Digital Architecture Engineering Research Center of Shaanxi Universities,Xi'an 710038,China)
出处 《工程勘察》 2023年第5期52-56,共5页 Geotechnical Investigation & Surveying
基金 陕西省教育科学“十四五”规划2022年度课题(编号:SGH22Y1866) 西安思源学院校级“绿色建造(BIM)技术科研创新团队”项目资助。
关键词 LIDAR点云 电力线 密度聚类 自适应 三维重建 精度评定 LiDAR point cloud power line density clustering adaptive 3D reconstruction accuracy evaluation
  • 相关文献

参考文献10

二级参考文献100

  • 1张吴明,阎广建,李巧枝,赵伟.直升机电力巡线系统中利用核线约束进行线路三维重建[J].北京师范大学学报(自然科学版),2006,42(6):629-632. 被引量:18
  • 2殷金华,孙朝阳,郑彦春.机载激光测量技术在特高压输电线路工程中的应用研究[J].电力建设,2007,28(7):9-13. 被引量:19
  • 3王成,Menenti M,StollM P,李传荣,唐伶俐.机载激光雷达数据的误差分析及校正[J].遥感学报,2007,11(3):390-397. 被引量:37
  • 4Jwa Y and Sohn G. 2010. A multi-level span analysis for improving 3D power-line reconstruction performance using airborne laser scanning data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38:97-102.
  • 5Jwa Y, Sohn G and Kim H B. 2009. Automatic 3D powedine reconstruc- tion using airborne lidar data. International Archives Photogramm Remote Sensing Spat Information Science, 38(Part 3/W8): 105-110.
  • 6Kim H and Sohn G. 2010.3D classification of Power-line scene from airborne laser scanning data using random forests. Photogrammetric Computer Vision and Image Analysis, 38:126-132.
  • 7Jing L, Zhang J X, Deng K Z, Liu Z J and Shi Q S. 2011. A new power- line extraction method based on airborne LiDAR point cloud data.2011 International Symposium on Image and Data Fusion (ISIDF) Tengchong, Yunnan: IEEE: 1-4 [DOI: 10. ll09/ISIDF. 2011 6O24293.
  • 8McLaughlin R A. 2006. Extracting a:ansmission lines from airborne LiDAR data. Geoseience and Remote Sensing Letters, IEEE, 3 (2): 222-226 [ DOI: 10.1109/LGRS2005.863390 ].
  • 9Melzer T and Briese C. 2004. Extraction and modeling of power lines from als point clouds. Proceedings of 28th Workshop. Hagenberg, Austria.
  • 10Ritter M and Benger W. 2012. Reconstructing power cables from LiDAR data using eigenvector streamlines of the point distribution tensor field. Geoscienee and Remote Sensing Letters, 11(2): 549-553.

共引文献233

同被引文献35

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部