期刊文献+

考虑超声探测器脉冲响应和方向性的光声图像重建方法

Image reconstruction method for photoacoustic imaging accounting for impulse responses and directivity of ultrasonic detector
下载PDF
导出
摘要 在光声成像中,假设超声探测器为具有全向响应的理想点探测器通常会导致图像分辨率下降。为了解决探测器效应引起的图像质量下降问题,提出一种考虑探测器特性的光声图像重建方法,建立包含探测器方向性和脉冲响应的前向成像模型,通过迭代求解前向模型的逆问题,实现光吸收能量分布图的高质量重建。仿真和仿体实验结果表明,与未考虑或未充分考虑探测器特性的传统重建方法和其他重建增强方法相比,所提方法可以显著提高图像分辨率和对比度,改善图像质量。 In photoacoustic imaging,image reconstruction suffers from the assumption of an ideal point detector with omnidirectional response,resulting in a degradation in the resolution of the reconstructed image.An image reconstruction method that takes into account the impulse responses and directionality of the ultrasonic detector is proposed in this paper.A high-quality image representing the optical absorption distribution is reconstructed by iteratively solving the inverse problem of the forward model incorporating the detector directivity and impulse response.Results of simulation and phantom experiments show that the proposed method can significantly improve image resolution and contrast compared with traditional reconstruction methods and other reconstruction enhancement methods that do not or not fully account for detector characteristics.
作者 孙慧峰 孙正 侯英飒 孙美晨 SUN Huifeng;SUN Zheng;HOU Yingsa;SUN Meichen(Department of Electronic and Communication Engineering,North China Electric Power University,Baoding 071003;Hebei Key Laboratory of Power Internet of Things Technology,North China Electric Power University,Baoding 071003)
出处 《声学学报》 EI CAS CSCD 北大核心 2023年第3期568-577,共10页 Acta Acustica
基金 国家自然科学基金项目(62071181)资助。
关键词 光声成像 图像重建 超声探测器特性 空间脉冲响应 电脉冲响应 方向性 Photoacoustic imaging Image reconstruction Ultrasonic detector characteristics Spacial impulse response Electric impulse response Directivity
  • 相关文献

参考文献1

二级参考文献21

  • 1孙宝申,沈建中.合成孔径聚焦超声成像(一)[J].应用声学,1993,12(3):43-48. 被引量:48
  • 2Bourantas C V, Garcia-Garcia H M, Naka K K et al. Hybrid intravascular imaging: current applications and prospective potential in the study of coronary atherosclero- sis. Journal of the American College of Cardiology, 2013; 61(13): 1369-1378.
  • 3Wang Bo, Su J L, Karpiouk A B et al. Intravascular pho- toacoustic imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2010; 16(3): 588-599.
  • 4Wang Lihong. Biomedical optics: principles and imaging. New Jersey: John Wiley and Sons, 2007:283-321.
  • 5Sethuraman S, Wang Bo, Litovsky S et al. Spectro- scopic intravascular photoacoustic imaging. In: Yuhas M P, eds 2007 IEEE Ultrasonics Symposium Proceed- ings, 2007 IEEE Ultrasonics Symposium Proceedings, New York, 2007, Piscataway: IEEE Press, 2007:1188-1191.
  • 6Su J L, Wang Bo, Emelianov S Y. Spectroscopic intravas- cular photoacoustic imaging of neovasculature: phantom studies. In: Orasvsky A A, Wang L V, eds Proceedings of SPIE Photons Plus Ultrasound: Imaging and Sensing,Proceedings of SPIE Photons Plus Ultrasound: Imaging and Sensing, San Jose, CA, 2009, Bellingham, Wash: SPIE, 2009:27-1-27-7.
  • 7Suri J S. Handbook of biomedical image analysis. New York: Springer, 2005:1-55.
  • 8Cardinal M R, Meunier J, Soulez G et al. Intravascular ultrasound image segmentation: a three-dimensional fast- marching method based on gray level distributions. IEEE Transactions on Medical Imaging, 2006; 25(5): 590-601.
  • 9Groot S C, Hamers R, Post F Het al. IVUS simulation based on histopathology. In: Murray A, ed Computers in Cardiology, 2006, Computers in Cardiology, 2006, Valen- cia, 2006, Piscataway: IEEE Press, 2006:681-684.
  • 10Cardoso F M, Mormes M C, Furuie S S. Realistic IVUS im- age generation in different intraluminal pressures. Ultra- sound in Medicine and Biology, 2012; 38(12): 2104-2119.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部