期刊文献+

具有组合非线性阻尼的非线性能量阱振动抑制响应分析 被引量:4

ANALYSIS ON VIBRATION SUPPRESSION RESPONSE OF NONLINEAR ENERGY SINK WITH COMBINED NONLINEAR DAMPING
下载PDF
导出
摘要 非线性能量阱是一种振动能量吸收装置,其在结构振动抑制中具有十分重要的作用.文章对具有组合非线性阻尼非线性能量阱的系统进行振动抑制相关的分析.首先对具有组合非线性阻尼非线性能量阱的系统进行理论模型的描述,对系统模型的运动方程利用复变量平均法进行推导,得到系统的慢变方程.其次对系统的慢变方程运用多尺度法进行强调制响应的分析,通过对系统进行慢不变流形和相轨迹的研究,描述系统强调制响应发生的条件基础.此外,还利用一维映射对系统进行分析,揭示外激励幅值对强调制响应存在时频率失谐系数取值区间的影响规律.最后利用能量谱、时间响应和庞加莱映射对耦合组合非线性阻尼非线性能量阱系统进行了振动抑制的相关研究,揭示组合非线性阻尼的非线性能量阱不同阻尼比、阻尼和刚度对其振动抑制效果的影响规律,得出组合非线性阻尼非线性能量阱和主结构响应存在一致性的现象,并验证所提出的组合非线性阻尼非线性能量阱模型具有较好的振动抑制能力. Nonlinear energy sink is a kind of vibration energy absorption device,which plays an important role in vibration suppression of structure.In this paper,the correlation analysis of vibration suppression for a system with combined nonlinear damping nonlinear energy sink is carried out.Firstly,the theoretical model of the system with combined nonlinear damping nonlinear energy sink is described.The motion equations of the system model are derived by using the complex variable average method,and the slow variable equations of the system are obtained.Secondly,the slow variable equations of the system are analyzed by using the multi-scale method.By studying the slow invariant manifold and phase trajectories of the system,the condition basis of the strongly modulated response of the system is described.In addition,the influence law of the external excitation amplitude on the frequency detuning coefficient interval in the presence of the strongly modulated response is revealed by analyzing the system with one-dimensional mapping.Finally,the energy spectrum,time response and Poincare mapping are applied to study the vibration suppression of the system with combined nonlinear damping nonlinear energy sink,the influence law of different damping ratio,damping and stiffness of nonlinear energy sink on its vibration suppression effect is revealed.Meanwhile,it is found that the response of the nonlinear energy sink with combined nonlinear damping is consistent with that of the main structure.In addition,it is verified that the nonlinear energy sink with combined nonlinear damping proposed in this study has good vibration suppression ability.
作者 张运法 孔宪仁 Zhang Yunfa;Kong Xianren(Research Center of Satellite Technology,Harbin Institute of Technology,Harbin 150080,China)
出处 《力学学报》 EI CAS CSCD 北大核心 2023年第4期972-981,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(51875119)。
关键词 非线性能量阱 振动抑制 复变量平均法 多尺度法 强调制响应 nonlinear energy sink vibration suppression complex variable average method multi-scale method strongly modulated response
  • 相关文献

参考文献5

二级参考文献62

  • 1刘耀宗,郁殿龙,赵宏刚,温熙森.被动式动力吸振技术研究进展[J].机械工程学报,2007,43(3):14-21. 被引量:59
  • 2高书磊,霍睿.柔性基础上非线性隔振系统的动力学分析[J].振动与冲击,2007,26(6):113-115. 被引量:7
  • 3陈阳,方勃,曲秀全,王日新,黄文虎.新型整星隔振器隔振性能分析[J].宇航学报,2007,28(4):986-990. 被引量:8
  • 4张红卫,吴伏家.一种新型抗振镗杆的结构设计[J].机械工程与自动化,2007(5):75-76. 被引量:3
  • 5Barry H, Khaki M, Mark S, et al. Advancing ORS technologies and capabilities with a space tourist suborbital vehicle [ C ]//AIAA SPACE 2009 Conference. California. 2009:14 -17.
  • 6Andrew D S. QuickSAT/step_SATdb-A satellite cQncurent design automation and design fox manufacturabi!lty cloud based environment for PnP based satellites[ J]. AIAA. 2011 : 29 -31.
  • 7Gendelman O V, Manevitch L I, Vakakis A F. Energy pumping in nonlinear mechanical oscillators: Part I Dynamics of The underlying Hamihonian systems [ J ]. Journal of Applied Mechanics, 2001, 68( 1 ) : 34 -41.
  • 8Vakakis F, Gendelman O V. Energy pumping in coupled mechanical oscillators, Part II: resonance capture [ J ]. Journal of Applied Mechanics, 2001, 68:42-48.
  • 9Manevitch L L The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables [J]. Nonlinear Dynamics, 2001, 25: 95- 109.
  • 10Gendelman O V, Gorlov D V, Manevitch L I, et al. Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses [ J ]. Journal of Sound and Vibration, 2005, 286 : 1 - 19.

共引文献76

同被引文献47

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部