期刊文献+

扩散峰度成像直方图联合EphA2分级在胶质瘤分级诊断中的价值 被引量:1

The value of diffusion kurtosis imaging histogram combine with EphA2 grading in glioma grading
下载PDF
导出
摘要 目的探讨扩散峰度成像(DKI)直方图联合红细胞生成素生成的肝细胞受体A2(EphA2在胶质瘤分级诊断中的价值。方法纳入2015年12月至2019年12月在东部战区总医院行神经外科手术切除并经病理证实的183例弥漫性胶质瘤患者(包括低级别胶质瘤63例、高级别胶质瘤120例),均行常规MRI和DKI检查[包括部分各向异性(FA)、平均扩散率(MD)、峰度各向异性(KFA)、平均峰度(MK)、平均峰度张量(MKT)],获取DKI直方图参数(包括平均值、方差、中位数、25%分位数、75%分位数、偏度、峰度),并行EphA2免疫组化染色。单因素和多因素Logistic回归分析筛查胶质瘤分级预测因素,并基于该因素构建DKI直方图以及DKI直方图联合EphA2评分的胶质瘤分级诊断预测模型,绘制受试者工作特征(ROC)曲线评估其诊断效能,Spearman秩相关分析探讨DKI直方图各项参数与EphA2评分的相关性。结果高级别胶质瘤FA值方差(t=-2.050,P=0.042)和75%分位数(t=-2.130,P=0.035),MD值方差(t=-6.052,P=0.000)和偏度(Z=-3.326,P=0.001),MK值平均值(t=-3.094,P=0.002)、方差(t=-2.140,P=0.027)、中位数(Z=-3.444,P=0.001)、25%分位数(t=-3.022,P=0.003)和75%分位数(t=-3.438,P=0.001),MKT值平均值(t=-3.096,P=0.002)、方差(t=-2.218,P=0.028)、中位数(t=-3.701,P=0.000)、25%分位数(t=-3.033,P=0.003)和75%分位数(t=-3.441,P=0.001)均高于低级别胶质瘤,FA值(Z=4.489,P=0.000)、MK值(Z=4.528,P=0.000)和MKT值(Z=4.528,P=0.000)偏度均低于低级别胶质瘤。Logistic回归分析显示,FA值偏度(OR=0.484,95%CI:0.278~0.842;P=0.010)、MD值方差(OR=2.821,95%CI:1.231~6.466;P=0.014)和MKT值75%分位数(OR=2.581,95%CI:1.148~5.806;P=0.022)是胶质瘤分级的预测因素。ROC曲线显示,DKI直方图联合EphA2评分的曲线下面积为0.90±0.02(95%CI:0.676~0.922,P=0.000),其诊断效能优于DKI直方图的0.86±0.02(95%CI:0.809~0.916,P=0.000;Z=1.114,P=0.041)。Spearman秩相关分析显示,仅MD值峰度与EphA2评分呈负相关关系(rs=-0.267,P=0.002)。结论DKI直方图联合EphA2评分的胶质瘤分级预测模型可以有效提高胶质瘤分级诊断效能。 Objective To investigate the value of diffusion kurtosis imaging(DKI)histogram combined with Ephrin type-A receptor 2(EphA2)in the evaluation of glioma grading.Methods A total of 183 patients with diffuse glioma[including 63 cases of low-grade glioma(LGG)and 120 cases of high-grade glioma(HGG)]who underwent neurosurgical resection and were confirmed by pathology at General Hospital of Eastern Theater Command from December 2015 to December 2019 were enrolled.All patients underwent conventional MRI and DKI examination[including fractional anisotropy(FA),mean diffusivity(MD),kurtosis fractional anisotropy(KFA),mean kurtosis(MK),mean kurtosis tensor(MKT)],and DKI histogram parameters(including mean,variance,median,25%quantile,75%quantile,skewness,kurtosis)were obtained.Immunohistochemical staining of EphA2 was performed.Univariate and multivariate Logistic regression analysis were used to screen the predictive factors of glioma grading,and based on these factors,the DKI histogram and the DKI histogram combined with EphA2 grading diagnostic prediction model were constructed,and the receiver operating characteristic curve(ROC)was drawn to evaluate its diagnostic efficiency.Spearman rank correlation analysis was used to explore the correlation between the DKI histogram parameters and the EphA2 grading.Results For HGG,the variance(t=-2.050,P=0.042)and 75%quantile(t=-2.130,P=0.035)of FA value,the variance(t=-6.052,P=0.000)and skewness(Z=-3.326,P=0.001)of MD value,the mean(t=-3.094,P=0.002),variance(t=-2.228,P=0.027),median(Z=-3.444,P=0.001),25%quantile(t=-3.022,P=0.003)and 75%quantile(t=-3.438,P=0.001)of MK value,the mean(t=-3.096,P=0.002),variance(t=-2.140,P=0.028),median(t=-3.701,P=0.000),25%quantile(t=-3.033,P=0.003)and 75%quantile(t=-3.441,P=0.000)of MKT value were higher than those of LGG.The FA value(Z=4.489,P=0.000),MK value(Z=4.528,P=0.000)and MKT value(Z=4.528,P=0.000)were significantly lower than those of LGG.Logistic regression analysis showed the skewness of FA value(OR=0.484,95%CI:0.278-0.842;P=0.010),variance of MD value(OR=2.821,95%CI:1.231-6.466;P=0.014)and 75%quantile of MKT value(OR=2.581,95%CI:1.148-5.806;P=0.022)were the predictive factors for glioma grading.The ROC curve showed the area under the curve(AUC)of DKI histogram parameters combined with EphA2 grading was 0.90±0.02(95%CI:0.676-0.922,P=0.000),which was better than DKI histogram(0.86±0.02;95%CI:0.809-0.916,P=0.000;Z=1.114,P=0.041).Spearman rank correlation analysis showed only MD kurtosis was negatively correlated with EphA2 grading(rs=-0.267,P=0.002).Conclusions The prediction model of DKI histogram combined with EphA2 grading can effectively improve the efficiency of grading diagnosis of glioma.
作者 李建瑞 刘宵雪 许强 骆仲强 卢光明 张志强 LI Jian-rui;LIU Xiao-xue;XU Qiang;LUO Zhong-qiang;LU Guang-ming;ZHANG Zhi-qiang(Department of Diagnostic Radiology,Jinling Hospital,Nanjing University School of Medicine,General Hospital of Eastern Theater Command,Nanjing 210002,Jiangsu,China)
出处 《中国现代神经疾病杂志》 CAS 北大核心 2023年第3期254-263,共10页 Chinese Journal of Contemporary Neurology and Neurosurgery
基金 国家重点研发计划项目(项目编号:2018YFA0701703) 国家自然科学基金资助项目(项目编号:81530054)。
关键词 神经胶质瘤 膜蛋白质类 弥散磁共振成像 预测 LOGISTIC模型 Glioma Membrane proteins Diffusion magnetic resonance imaging Forecasting Logistic models
  • 相关文献

参考文献2

二级参考文献1

共引文献2

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部