期刊文献+

基于黄金正弦的自适应蝴蝶优化算法

Adaptive butterfly optimization algorithm based on golden sine
下载PDF
导出
摘要 针对蝴蝶优化算法存在寻优精度低、易陷入局部最优等问题,文章提出了一种基于黄金正弦算法的自适应蝴蝶优化算法(Adaptive Butterfly Optimization Algorithm with Golden Sine Algorithm,AGSBOA)。首先使用了自适应惯性权重,提高算法跳出局部最优的能力。然后在局部搜索中加入了黄金正弦的搜索策略,提高算法的寻优精度。通过14个函数的仿真实验对比,结果表明优化后的AGSBOA有更好的收敛速度、寻优精度和稳定性。 Aiming at the problems of butterfly optimization algorithm,such as low optimization accuracy and easy to fall into local optimization,this paper proposes an adaptive Butterfly Optimization Algorithm with Golden Sine Algorithm(AGSBOA).First,the adaptive inertia weight is used to improve the ability of the algorithm to jump out of the local optimum.Then the golden sine search strategy is added to the local search to improve the accuracy of the algorithm.The simulation results of 14 functions show that the optimized AGSBOA has better convergence speed,optimization accuracy and stability.
作者 张同 付伟 马宁 季伟东 刁衣非 ZHANG Tong;FU Wei;MA ning;JI Weidong;DIAO Yifei(Harbin Normal University School of Computer Science and Information Engineering,Heilongjiang Harbin 150025,China)
出处 《长江信息通信》 2023年第3期70-73,共4页 Changjiang Information & Communications
基金 黑龙江省自然科学基金项目(LH2021F037)资助 黑龙江省高等教育教学改革项目(SJGY20210455,SJGY20180259)资助 哈尔滨市科技局科技创新人才研究专项项目(2017RAQXJ050)资助 哈尔滨师范大学博士科研启动基金项目(XKB201901)资助 哈尔滨师范大学计算机学院科研项目(JKYKYY202005,JKYKYY202102)资助 哈尔滨师范大学研究生培养质量提升工程项目(HSDYJSJG2019006)资助。
关键词 蝴蝶优化算法 自适应权重 黄金正弦 butterfly optimization algorithm Adaptive weight Golden Sine
  • 相关文献

参考文献10

二级参考文献65

  • 1杨洪生,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006:3-4.
  • 2Jutten C,Herault J.Blind separation of sources,part I:an adap- tive algorithm based on neuromimefic I J]. Signal Processing, 1991,24(1) :1 - 10.
  • 3Cardoso J F, Laheld B H. Equivariant adaptive sources separa-tion [ J ].IEEE. Transactions on Signal Processing, 1996, 44 (12) ,3017 - 3029.
  • 4Zhou Guoxu, Yang Zuyuan, Xie Shengli, et al.Mixing Matrix estimation from sparse mixtures with unknown number of sources[ J]. IEEE Transactions on Neural Networks, 2011,22 (2) :211 - 221.
  • 5Acharya D P,Panda G,Mishra S,et al. Bacteria foraging based independent component analysis[ A ]. Proceedings of the Inter- national Conference on Computational Intelligence and Multi- media Applications ( ICCIMA2007 ) [ C ]. Washington: 1EEE Computer Society Press,2007.527- 531.
  • 6Karaboga D. An idea based on honey bee swarm for numerical optimization [ R ]. Kayseri: Erciyes University, Engineering Faculty, Computer Engineering Deparanent,2005.
  • 7Banhamsakun A, Achalakul T, Sirinaovakul B. The best-so-far selection in artificial bee colony algorithm[ J ]. Applied Soft Computing,2011,11(2) :2888 - 2901.
  • 8Yang H H, Amari S. Serial updating rule for blind separation derived from the method of seoring[J]. IEEE Transactions on Signal Processing, 1999,47 (8) : 2279 - 2285.
  • 9Senthil Arumugam M,Rao M V C,Tan Alan W C.A novel and effective particle swarm optimization like algorithm with extrapolation technique [ J ]. Applied Soft Computing, 2009,9 (1) :308 - 320.
  • 10Amari S, Cichicki A, Yang H H. A new learning algorithm for blind signal separation [ J ]. Advances in Neural Information Processing Systems, 1996,8 : 757 - 764.

共引文献267

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部