期刊文献+

低温风洞极低露点原位在线测量技术研究

Research on ultra low dew point in-situ on-line measurement technology for cryogenic wind tunnel
下载PDF
导出
摘要 面向低温风洞极低露点原位在线测量需求,开展了基于激光吸收光谱的宽温域、高精度、极低露点原位在线测量技术研究。分析了激光吸收光谱露点测量技术原理,开展了吸收谱线选型、光谱参数标定和光谱信号处理方法研究,测量了低温平台原位在线露点和0.3 m低温引导风洞露点,并与冷镜式露点仪比较了测量精度。研究结果表明:激光吸收光谱露点测量技术可以实现宽温域、高精度、原位在线露点测量,露点测量范围–100~30℃,测量误差小于1℃,测量时间低于1 s,可满足低温风洞极低露点测量需求。 To achieve wide temperature domain,high precision and ultra low dew point in-situ on-line measurement in the cryogenic wind tunnel,a technology based on the laser absorption spectrum is developed.In the method,the principles of laser absorption spectroscopic technology for dew point measurement are analyzed firstly.Then the absorption spectroscopic selection,spectral parameter calibration and spectral signal processing are provided.The experiments are carried out on the low temperature platform and in the 0.3 m cryogenic wind tunnel,which are compared to the chilled-mirror dew-point hygrometer measurement.The experimental results show that the developed technology can achieve wide temperature domain,high precision and in-situ on-line dew point measurement.The measurement range is from–100℃to 30℃,the error is less than 1℃,and the time is less than 1 s.It can be used for ultra low dew point in-situ on-line measurement in the cryogenic wind tunnel.
作者 王斌 许振宇 张文清 阚瑞峰 盖文 WANG Bin;XU Zhenyu;ZHANG Wenqing;KAN Ruifeng;GAI Wen(Facility Design and Instrumentation Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China;Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China)
出处 《实验流体力学》 CAS CSCD 北大核心 2023年第2期105-114,共10页 Journal of Experiments in Fluid Mechanics
基金 国家自然科学基金项目(11602292,61801479)。
关键词 低温风洞 露点 激光吸收光谱 原位在线测量 cryogenic wind tunnel dew point laser absorption spectroscopy in-situ on-line measurement
  • 相关文献

参考文献9

二级参考文献60

  • 1张玉存.军事气象仪器计量与检定[M].北京:解放军出版社,2000..
  • 2赵伯林.大气探测原理.北京:气象出版社,1987.
  • 3王宝亮.光学露点仪的研制:[学位论文].北京:北京理工大学,1999.
  • 4Loving D L. Wind tunnel flight correlation of shock-induced separa- ted flow[R]. NASA TN D-3580, 1966.
  • 5James M Corliss, Stanley R Cole. Heavy gas conversion of the NASA Langley transonic dynamics tunnel[R]. AIAA 98-2710.
  • 6Stanley R Cole, Jerry L Garcia. Past, present and future capa bilities of the transonic dynamics tunnel from an aeroelasticity perspective[R]. AIAA 2000-1767.
  • 7Cole S R, Rivera. The new heavy gas testing capability in the NASA Langley transonic dynamics tunnel[C]. The Royal Aero- nautical Society Wind Tunnels and Wind Tunnel Test Tech- niques Forum, Chure-chill College, Cambridge, UK, April 14 16, 1997.
  • 8Sharer M A. Modeling of heavy-gas effects on airfoil flows[R]. NASA-CR-1900357, 1992.
  • 9Anders J B, Anderson W K. The use of heavy gas for increased Reynolds number in transonic wind tunnels[R]. AIAA 98 2882.
  • 10Goodyer M J, Kilgore R A. The high Reynolds number eryo genic wind tunnel[R]. AIAA 72-995.

共引文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部