期刊文献+

基于集成YOLOv5算法的输电线路杆塔目标检测 被引量:3

Target Detection of Transmission Line Towers Based on Integrated YOLOv5 Algorithm
下载PDF
导出
摘要 杆塔是输电线路中的重要组成设施,其安全直接影响电网电力输送的安全稳定。根据遥感影像中杆塔小目标识别精度低等问题,研究基于YOLOv5s和YOLOv5x算法进行集成建模,并加入加权框融合(weighted boxes fusion,WBF)推理机制,借助高分辨率遥感杆塔影像数据集进行模型训练测试,并对数据集做测试时增强(test-time augmentation,TTA)。实验结果显示:与单模型识别结果相比较,集成YOLOv5模型识别精确度、召回率、mAP@.5显著提升,分别达到0.952、0.944、0.929;并且在一些复杂背景、不同光照环境和不同天气条件下模型都具有良好的识别效果,具有较强的鲁棒性。 Transmission tower is an important component of transmission line,and its safety directly affects the safety and stability of power transmission.According to the low accuracy of small target identification of transmission tower in remote sensing images,in this study,integrated modeling was conducted based on YOLOv5s and YOLOv5x algorithms,weighted boxes fusion(WBF)reasoning mechanism was added,model training was conducted with high-resolution remote sensing tower image data set,and performed a test-time augmentation of the data set.The experimental results showed that compared with the single model recognition results,the recognition accuracy,recall rate and mAP@.5 of integrated YOLOv5 model are significantly improved,reaching 0.952,0.944 and 0.929 respectively.In addition,under some complex background,different illumination environment and different weather conditions,the model proposed in this paper has good recognition effect and strong robustness.
作者 苏晓 张明晖 陈峻宇 丁争 许华栋 白万崧 SU Xiao;ZHANG Minghui;CHEN Junyu;DING Zheng;XU Huadong;BAI Wansong(Wuxi Power Supply Branch of State Grid Jiangsu Electric Power Co.,Ltd.,Jiangsu Wuxi 214000,China)
出处 《农村电气化》 2023年第5期33-39,共7页 Rural Electrification
基金 国网江苏省电力有限公司科技项目“基于空间数据与人工智能的输电线路通道运维关键技术及应用研究”(J2021169)。
关键词 目标检测 遥感 输电线路杆塔 YOLOv5 target detection remote sensing transmission line towers YOLOv5
  • 相关文献

参考文献3

二级参考文献28

共引文献24

同被引文献28

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部