期刊文献+

基于高频高维协方差矩阵收缩估计的最小方差投资组合

Shrinkage Estimation of High Frequency and High Dimensional Covariance Matrix and Its Application in Minimum Variance Portfolio
下载PDF
导出
摘要 高频金融数据背景下金融资产收益率序列普遍存在微观噪声结构,并且存在较为明显的重尾特征;同时,金融资产收益率的协方差矩阵具有高维性和稀疏性特征。基于预平均方法和Huber损失函数,采用收缩估计方法,得到高频金融数据背景下金融资产收益率的协方差矩阵的估计。模拟结果显示收缩估计方法有着较好的效果。此外,以中国A股市场资产的高频数据为样本进行实证分析,探究估计量在最小方差投资组合上的投资绩效。分析的结果显示:(1)预平均方法可以剔除绝大部分微观结构噪声对协方差矩阵估计的影响;Huber损失函数也可以减弱重尾现象对协方差矩阵估计的影响;(2)收缩估计量均能更好地估计总体协方差矩阵,并且在最小方差投资策略的比较中也拥有良好的投资绩效。 Microstructure noise and heavy tail phenomena are very common in financial asset return series under the background of high-frequency trading.At the same time,the covariance matrix of financial asset returns is characterized by high dimensionality and sparsity.Based on the pre average method with Huber loss function,a shrinkage estimation of the covariance matrix of financial asset returns in the context of high-frequency financial data is proposed.The simulation results show that the shrinkage estimation performs well.Finally,high-frequency data of Chinese A-share stock market is applied for empirical analysis to explore the investment performance of the estimator on the minimum variance portfolio.The results show that:(1)The pre average method can eliminate the influence of most microstructure noises on covariance matrix estimation;Huber loss function can also weaken the influ-ence of heavy tail on covariance matrix estimation;(2)Shrinkage estimators can better estimate the overall covariance matrix,and have the better performance in the comparison of minimum variance investment strategies.
作者 李瑜 肖敏 明瑞星 LI Yu;XIAO Min;MING Ruixing(Mental Health Education Center,Zhejiang Gongshang University,Hangzhou 310018,China;School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018,China;Collaborative Innovation Center of Statistical Data Engineering Technology&Application,Zhejiang Gongshang University,Hangzhou 310018,China)
出处 《商业经济与管理》 CSSCI 北大核心 2023年第3期94-108,共15页 Journal of Business Economics
基金 浙江省社会科学规划课题“智媒体下00后大学生参与网络集群行为心理机制及对策研究”(22GXSZ001Z) 国家自然科学基金项目“基于有序数据的统计分析及其应用研究”(11971433) 浙江省教育厅一般项目“高频高维协方差矩阵的估计及其应用”(Y202045232) 浙江工商大学“数字+”学科建设管理项目“数据资产:经济理论、价值核算、市场交易与政策创新(SZJ2022B004)” 浙江省统计科学研究基地项目“高维情形下最小方差投资组合研究”(22TJD02)。
关键词 高频数据 高维 微观结构噪声 重尾 最小投资组合 high-frequency data high dimension microstructure noise heavy tail minimum variance portfolio(MVP)
  • 相关文献

参考文献6

二级参考文献40

  • 1徐正国,张世英.调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J].系统工程,2004,22(8):60-63. 被引量:51
  • 2徐正国,张世英.高频时间序列的改进“已实现”波动特性与建模[J].系统工程学报,2005,20(4):344-350. 被引量:18
  • 3彭作祥,庞皓.具有GARCH-skew-t误差项的时序的单位根检验[J].数理统计与管理,2005,24(6):49-54. 被引量:4
  • 4Andersen T G, Bollerslev T, Diebold F, et al. Exchange rate returns standardized by realized volatility are (Nearly) Gaussian[J].Multinational Finance Journal, 2000, 4: 159-179.
  • 5Andersen T G, Bollerslev T, Diebold F, et al. The distribution of exchange rate volatility[J]. Journal of American Statistical Association, 2001, 96: 42-55.
  • 6Andersen T G, Bollerslev T, Diebold F, et al. The distribution of stock return volatility[J]. Journal of Financial Economics, 2001,61: 43-76.
  • 7Andersen T G, Bollerslev T, Diebold F, et al. Modelling and forecasting realized volatility [ J ]. Econometrica, 2003, 71 (2):579-625.
  • 8Areal N M, Taylor S J. The realized volatility of FTSE-100 futures prices[J]. Journal of Futures Markets, 2002, 22(7):627-648.
  • 9Blair B J, Poon S H, Tarlor H J. Forecasting S&P 100 volatility: The incremental information content of implied volatilities and high frequeney index returns[J]. Journal of Econometrics, 2001, 105: 5-26.
  • 10Protter P. Stochastic Integration and Differential Equations: A New Approach (Second Edition)[M]. New York: Springer Verlag, 1992.

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部