期刊文献+

基于水文大数据挖掘的雨型径流分析 被引量:2

Rainfall runoff analysis based on the hydrological big data mining
下载PDF
导出
摘要 准确有效的洪水预报对于防治洪涝灾害具有十分重要的现实意义。本文结合流域实际情况与数据挖掘技术,利用江西省大汾水流域水文数据,对洪水模式给出了自动化识别定义。在此基础上,分别提出了基于平均雨量的水位预测方法和基于逐点雨量的水位预测方法,并进行实际数据预测分析。本文水位预测方法是数据水文领域的一项探索性研究,具有重要理论价值和现实意义。 Accurate and effective flood forecasting is of great practical significance for controlling the flood disaster.Combined with the basin reality and the data mining technology,this paper gives the definition of automatic identification of flood mode by using the hydrological data of Dafen river basin in Jiangxi province.On this basis,the water level prediction methods based on average rainfall and point-by-point rainfall are proposed respectively to carry out the actual data prediction analysis.It is an exploratory research in the field of data hydrology,which has both important theoretical value and practical significance.
作者 谢敏 曾斌 朱松挺 罗莹 XIE Min;ZENG Bin;ZHU Songting;LUO Ying(Jiangxi Flood Control Information Center,Nanchang Jiangxi,330009,China)
出处 《江西水利科技》 2023年第3期201-205,共5页 Jiangxi Hydraulic Science & Technology
关键词 洪水预报 大数据挖掘 逐点雨量模型 雨型径流分析 Flood forecasting Data mining technology Point-by-point rainfall model Rainfall runoff analysis
  • 相关文献

参考文献7

二级参考文献38

  • 1吴莉萍,朱长军,李莎.灰色预测在地下水位预测中的应用[J].地下水,2012,34(2):66-68. 被引量:9
  • 2包为民.新安江模型参数的自动率定[J].河海大学学报,1986,(4).
  • 3陈小红.降雨径流实时预报研究[J].武汉水利电力学报,1993,(5):23-28.
  • 4Blatt M, Wiseman S, Domany E. Superparamagnetic clustering of data[J].Physical Review Letters, 1996,76(18):3251-3254.
  • 5Yoon H, Jun S C, Hyun Y, et al. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer[J].Journal of Hydrology, 2011,396(1-2):128-138.
  • 6Mohanty S, Madan K J, Kumar A, et al. Artificial neural network modeling for groundwater level forecasting in a river island of Eastern India[J].Water Resources Management, 2010,24(9):1845-1865.
  • 7Carcano E C, Bartolini P, Muselli M, et al. Jordan recurrent neural network versus IHACRES in modelling daily streamflows[J].Journal of hydrology, 2008,362(3-4):291-307.
  • 8Ding H, Trajcevski G, Scheuermann P, et al. Querying and mining of time series data: Experimental comparison of representations and distance measures[C]// Proceedings of the 34th VLDB. 2008,1(2):1542-1552.
  • 9Yi B K, Faloutsos C. Fast time sequence indexing for arbitrary Lp norms[C]// Proceedings of the 26th International Conference on Very Large Databases. 2000:297-306.
  • 10马细霞,穆浩泽.基于小波分析的支持向量机径流预测模型及应用[J].灌溉排水学报,2008,27(3):79-81. 被引量:20

共引文献43

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部