期刊文献+

高负荷压气机的轮毂型线三维气动优化及其CFD验证

3D Aerodynamic Optimization of Hub Profile and CFD Validation for High-Load Compressor
下载PDF
导出
摘要 针对高负荷压气机难以控制角区的二次流、叶片表面存在大规模边界层分离等技术瓶颈,本文提出了一种三维端壁型线的气动优化方法,对高负荷压气机轮毂型线优化进行了研究,并对所采用的方法进行了验证,开发了相应的优化系统。结果表明,所采用的端壁型线优化方法能有效抑制附面层分离,降低吸力面转角区域二次流的强度和规模。因此,叶片通道控制流动方向和优化流动条件的能力得到了扩展。压气机级的整体气动性能,如失速裕度和等熵效率也得到了提高。优化后,在通流能力较好的情况下,压气机级的气动效率达到了88.59%,提高了1.05%。本文提出的方法和相应的系统很好地促进了压气机气动设计系统的发展,具有良好的工程应用前景,为压缩系统获得更突出的通载能力和更好的流动结构提供了新的思路和解决方案。 To solve the technological bottlenecks of high-loaded compressors such as controlling secondary flow in the corner near the endwall and weakening large-scale boundary layer separation on the blade surface,a 3D aerodynamic optimization method was proposed for optimizing the endwall profile of high-loaded compressors and developing the corresponding optimization system.Then,the adopted method and system were also validated.Based on the calculation results,it was concluded that the applied endwall profile optimization method could ef⁃fectively suppress the boundary layer separation and reduce the intensity of the secondary flow in the corner on the suction surface.Hence,the blade channels’ability of controlling the flow direction and optimizing the flow condition was expanded.Overall aerodynamic performance of the compressor stage,such as the stall margin and the isentropic efficiency,was also improved.After this optimization,the aerodynamic efficiency of the compres⁃sor stage has reached 88.59%,raised by 1.05%.Therefore,the method and corresponding system proposed in this paper can promote the development of the compressor aerodynamic design system well,having a good pros⁃pect of engineering application and providing a new idea and solution for compression systems to acquire more outstanding load-carrying ability and better flow structures.
作者 方垍洧 陈焕龙 李杰灵 颜廷松 FANG Ji-wei;CHEN Huan-long;LI Jie-ling;YAN Ting-song(School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China;School of Mechanical and Power Engineering,Shanghai Jiaotong University,Shanghai 200240,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2023年第5期74-85,共12页 Journal of Propulsion Technology
基金 国家科技重大专项(J2019-Ⅱ-0016-0037)。
关键词 气动优化 端壁型线 高负荷压气机 附面层分离 端壁二次流 Aerodynamic optimization Endwall profile High-loaded compressor Boundary layer sepa⁃ration Endwall secondary flow
  • 相关文献

参考文献6

二级参考文献29

  • 1杨春,李秋实,袁巍,周盛.轮毂修型对压气机静子角区堵塞的影响[J].航空动力学报,2009,24(10):2333-2337. 被引量:6
  • 2周晓勃,周盛,侯安平,郑新前.射流对压气机叶栅分离流控制的数值研究[J].航空学报,2007,28(B08):7-13. 被引量:8
  • 3Adamczyk J J.Model equation for simulation flows in multistage turbomachinery[R].ASME Paper 85-GT-226 or NASA-TM86869.
  • 4Adamczyk J J.A model for closing the invisid form of the average passage equation system[J].Journal of Turbinemachinery,1986,108(2):180-186.
  • 5Rhie C M,Gleixner A J,Spear D A,et al.Development and application of a multistage navier-stokes solver,Part 1:Multistage modeling using body-forces and deterministic stresses[R].ASME Paper 95-GT-342,1995.
  • 6Sondak D L,Dorney D J,Davis R L.Modeling turbomachinery unsteadiness with lumped deterministic stresses[R].AIAA-96-2570,1996.
  • 7Van de Wall A G,Kadambi J R,Adamczyk J J.A transport model for the deterministic stresses associated with turbomachinery blade row interaction[J].Journal of Turbomachinery,2000,122(4):593-603.
  • 8Giles M.An approach for multistage calculations incorporating unseadiness[R].ASME92-GT-282,1992.
  • 9He L,Ning W.Efficient approach for analysis of unsteady viscous flows in turbomachines[J].AIAA JOURNAL,1998,36 (11):2005-2012.
  • 10Chen T,Vasanthakumar P,He L.Analysis of unsteady blade row interaction using nonlinear harmonic approach[J].Journal of Propulsion and Power,2001,17 (3):651-658.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部