期刊文献+

基于MCNN人群密度估算的安全预警 被引量:1

Safety Warning Based on MCNN Crowd Density Estimation
下载PDF
导出
摘要 针对大规模人群聚集造成的拥挤和踩踏事件给城市公共安全带来的巨大损失,确定高密度人群区域进行安全预警变得至关重要。使用高斯滤降低噪声,输入到多列卷积神经网络MCNN(Multi-column Convolutional Neural Network),将图像映射为人群密度图,准确的估算人群数量,确定出高密度人群区域。在Shanghaitech数据集上实验,test_data_A部分MSE和MAE分别为229.55和162.58,test_data_B部分MSE和MAE分别为43.68和25.61。 In view of the huge loss of urban public safety caused by crowd and stampede caused by largescale crowd gathering,it is crucial to determine the high-density crowd area for safety early warning.The Gaussian filter is used to reduce the noise,and the image is input into the Multi-column Convolutional Neural Network(MCNN),and the image is mapped into the crowd density map,the number of people is accurately estimated,and the high-density crowd area is determined.Experiments on the Shanghaitech dataset show that the MSE and MAE of the test_data_A part are 229.55 and 162.58,and the MSE and MAE of the test_data_B part are 43.68 and 25.61,respectively.
作者 雷善中 冯飞杨 武文哲 王方馨 LEI Shanzhong;FENG Feiyang;WU Wenzhe;WANG Fangxin(Xizang Minzu University,Xianyang Shaanxi 712082)
机构地区 西藏民族大学
出处 《软件》 2023年第3期56-58,共3页 Software
基金 西藏自然科学基金(XZ202001ZR0065G) 西藏民族大学研究生科研创新与实践项目(Y2022096)。
关键词 MCNN 人群密度图 高斯滤波 密度估计 安全预警 MCNN crowd density map gaussian filtering density estimation security warning
  • 相关文献

参考文献6

二级参考文献231

  • 1王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 2Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 3Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 4Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 5Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 6Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 7Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 8Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.
  • 9Morris B T, Trivedi M M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1114-1127.
  • 10Aggarwal J K, Ryoo M S. Human activity analysis: A review. ACM Computing Surveys, 2011, 43(3): 16.

共引文献438

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部