摘要
针对大规模人群聚集造成的拥挤和踩踏事件给城市公共安全带来的巨大损失,确定高密度人群区域进行安全预警变得至关重要。使用高斯滤降低噪声,输入到多列卷积神经网络MCNN(Multi-column Convolutional Neural Network),将图像映射为人群密度图,准确的估算人群数量,确定出高密度人群区域。在Shanghaitech数据集上实验,test_data_A部分MSE和MAE分别为229.55和162.58,test_data_B部分MSE和MAE分别为43.68和25.61。
In view of the huge loss of urban public safety caused by crowd and stampede caused by largescale crowd gathering,it is crucial to determine the high-density crowd area for safety early warning.The Gaussian filter is used to reduce the noise,and the image is input into the Multi-column Convolutional Neural Network(MCNN),and the image is mapped into the crowd density map,the number of people is accurately estimated,and the high-density crowd area is determined.Experiments on the Shanghaitech dataset show that the MSE and MAE of the test_data_A part are 229.55 and 162.58,and the MSE and MAE of the test_data_B part are 43.68 and 25.61,respectively.
作者
雷善中
冯飞杨
武文哲
王方馨
LEI Shanzhong;FENG Feiyang;WU Wenzhe;WANG Fangxin(Xizang Minzu University,Xianyang Shaanxi 712082)
出处
《软件》
2023年第3期56-58,共3页
Software
基金
西藏自然科学基金(XZ202001ZR0065G)
西藏民族大学研究生科研创新与实践项目(Y2022096)。
关键词
MCNN
人群密度图
高斯滤波
密度估计
安全预警
MCNN
crowd density map
gaussian filtering
density estimation
security warning