期刊文献+

基于MHI与LBP表情识别的辅助异常行为识别 被引量:1

Auxiliary Abnormal Behavior Recognition Based on MHI and LBP Expression Recognition
下载PDF
导出
摘要 为了进一步提高家居环境中异常行为的在线识别能力,将运动历史图像与表情识别相结合,提出了一种基于MHI(Motion History Image)与LBP(Local Binary Pattern)表情识别的辅助异常行为识别方法。该方法通过运动历史图像辅助识别运动轨迹,同时利用LBP提取人脸特征,进行面部表情识别,进而辅助识别异常行为状态。实验结果表明,本文方法对异常行为的识别率有一定的提升。 In order to further improve the online recognition ability of abnormal behavior in the home environment,a method of auxiliary abnormal behavior recognition based on MHI(Motion History Image)and LBP(Local Binary Pattern)expression recognition is proposed by combining motion history images with expression recognition.This method uses motion history images to assist in recognizing motion tracks,and LBP to extract facial features for facial expression recognition,thus assisting in identifying abnormal behavior states.The experimental results show that this method can improve the recognition rate of abnormal behavior.
作者 成立 CHENG Li(Jiangsu Urban and Rural Construction College,Changzhou Jiangsu 213147)
出处 《软件》 2023年第4期40-43,共4页 Software
基金 江苏城乡建设职业学院校级课题(2018KYC013)。
关键词 MHI LBP 表情识别 异常行为识别 MHI LBP expression recognition abnormal behavior recognition
  • 相关文献

参考文献7

二级参考文献45

  • 1万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 2Moeslund TB, Hilton A, Kruger V. A survey of advances in vision-based human motion capture and analysis [J]. Computer Vision and Image Understanding. 2006, 104 (23): 90-126.
  • 3Fuentes D, Gonzalez-Abril L, Angulo C, et al. Online motion recognition using an accelerometer in a mobile device [J]. Ex- pert Systems withApplications, 2012, 39 (3).. 2461-2465.
  • 4Zbu Chun, Sheng Weihua. Motion and location based online human daily activity recognition [J]. Pervasive and Mobile Computing, 2011, 7 (2): 256-269.
  • 5Andrea Mannini, Angelo Maria Sabatini. On-line classification of human activity and estimation of walk-run speed from accele- ration data using support vector machines [C] //Engineering in Medicine and Biology Society, Annual International Conference oI the IEEE, 20111 3302-3305.
  • 6Morency Louis-Philippe, Ariadna Quattoni, Trevor Darrell. Latent-dynamic discriminative models for continuous gesture recognition [C] //Computer Vision and Pattern Recognition, 2007 : 1-8.
  • 7Zhang Xuetao, Zheng Nanning, Wang Fei, et al. Visual reco- gnition of driver hand-held cell phone use based on hidden CRF [C] //Vehicular Electronics and Safety, 2011: 248-251.
  • 8李铮.精通Matlab数字图像处理与识别[M].北京:北京人民邮电出版社,2013.
  • 9Zhang Shengjun, He Xiaohai, Teng Qizhi. Fuzzy-based la- tent-dynamic conditional random fields for continuous gesture recognition [J]. Optical Engineering, 2012, 51 (6): 067202-1-067202-8.
  • 10Mahmoud Elmezain, Ayoub A1-Hamadi. LDCRFs-based hand gesture recognition [C] //Systems, Man, and Cybernetics, 2012 : 2670-2675.

共引文献39

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部