摘要
图像风格迁移是人工智能进行艺术创造的一个重要方向。传统风格迁移技术通过逐像素迭代得到风格图片,训练耗时且迁移效果一般,无法广泛地应用于微端设备上。针对此问题,本文提出了一款轻量的图像风格迁移模型,该模型能够充分利用VGG-16卷积网络强大的图像特征提取功能。通过优化兼顾了图像内容和风格信息的损失函数,该模型能够在短时间内完成图像的风格学习,并迁移运用到目标图片上,所得到的迁移图片效果优于传统风格迁移技术。
Image style transfer is an important direction of art creation by artificial intelligence.The traditional style transfer technology gets the style image by pixel iteration,which is time-consuming to train and the transfer effect is not good,so it can't be widely applied to the micro-terminal device.To solve this problem,this paper proposes a lightweight image style transfer model,which could make full use of the powerful image feature extraction function of VGG-16 convolutional network.By optimizing the loss function of image content and style information,the model can complete image style learning in a short time,and transfer to the target image,and the obtained transfer image effect is better than the traditional style transfer technology.
作者
李恭伟
LI Gongwei(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou Zhejiang 310023)
出处
《软件》
2023年第4期148-151,共4页
Software