期刊文献+

高斯混合模型下建筑工人高空作业失稳检测方法 被引量:2

Instability detection method for construction workers working at altitude based on Gaussian mixture model
下载PDF
导出
摘要 为防止施工现场高处坠落事故,实现个性化矫正管理,在考虑个体异质性对运动信号造成的差异化影响基础上,提出一种基于高斯混合模型(GMM)的实时检测方法,可及时识别建筑工人高空作业失稳状态。首先,采用姿态传感器实时采集加速度和角速度数据,以刻画建筑工人的高空作业姿态特征;然后,基于GMM算法,建立建筑工人高空作业的个性化失稳检测模型,获得个性化阈值,以判断姿势失稳状态;最后,通过试验对比基于个体数据集和公共数据集2种方式构建的模型。研究结果表明:生成的个性化检测模型在准确度P、召回率R和综合评价指标F 1值上,均远优于公共数据集模型,具有更好的个性化检测效果。该失稳检测方法能够从工人的作业姿态习惯探究个性化的高空失稳风险,促进差异化安全预控和精准化安全培训。 In order to prevent the construction site high fall accident and achieve personalized correction management,based on considering the differentiation of motion signals caused by individual heterogeneity,a real-time detection method based on GMM was proposed,which can timely identify the instability state of construction workers working at height.This method used posture sensors to collect real-time acceleration and angular velocity data to describe the posture features of construction workers working at height.Based on GMM,it established a personalized instability detection method to obtain personalized thresholds for judging the instability state of construction workers working at heights.Finally,it compared two models constructed by individual and public data sets through experiments.The results show that the personalized detection model generated is far superior to the public data set model in accuracy(P),recall rate(R)and comprehensive evaluation value(F 1).It shows the better-personalized detection effect using the personalized detection model.This study can help identify personalized risks of instability working at height from workers'habitual working postures,provide new ideas and references for preventing falling accidents,and help realize personalized correction training for workers.
作者 范文涵 林欣燕 左超 徐小媛 周建亮 FAN Wenhan;LIN Xinyan;ZUO Chao;XU Xiaoyuan;ZHOU Jianliang(School of Mechanics and Civil Engineering,China University of Mining and Technology,Xuzhou Jiangsu 221116,China;Department of Engineering Art and Design,Shanxi Vocational and Technical College of Finance and Trade,Taiyuan Shanxi 030602,China;Beijing Glory PKPM Technology Co.,Ltd.,Beijing 100084,Chian;Jiangsu Shullian Building Science Research Institute Co.,Ltd.,Xuzhou Jiangsu 221116,China)
出处 《中国安全科学学报》 CAS CSCD 北大核心 2023年第4期114-120,共7页 China Safety Science Journal
基金 国家自然科学基金面上项目资助(72171224) 教育部人文社科规划基金资助(19YJAZH122) 中国建设教育协会教育教学科研重点课题(2021168)。
关键词 高斯混合模型(GMM) 建筑工人 高空作业 失稳检测 实时检测 gaussian mixture model(GMM) construction worker work at height instability detection real-time detection
  • 相关文献

参考文献8

二级参考文献75

  • 1申玲,唐晔文,牟月.基于Cloud-BN的装配式住宅构件吊装安全评价[J].中国安全科学学报,2019,29(10):147-153. 被引量:20
  • 2刘东海,李新华,白乙拉,安会江.下肢后肌群伸展性对老年人下肢运动能力和姿势的影响——对下肢后肌群伸展性系列研究报告之一[J].体育学刊,1996,3(1):26-28. 被引量:2
  • 3马彬,陈立道,姜敏.建筑施工高处坠落事故研究[J].中国安全科学学报,2004,14(9):108-112. 被引量:31
  • 4郭豪收,张建设.建筑施工高处坠落伤亡的事故树安全研究[J].山西建筑,2007,33(19):197-198. 被引量:21
  • 5Khan A M,Lee Y K,Lee S Y,et al.A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer[J].IEEE Transactions on Information Technology in Biomedicine,2010,14(5):1166-1172.
  • 6Tang W,Sazonov E S.Highly accurate recognition of human postures and activities through classification with rejection[J].IEEE Journal of Biomedical and Health Informatics,2014,18(1):309-315.
  • 7Wang L,Gu T,Chen H,et al.Real-time activity recognition in wireless body sensor networks:from simple gestures to complex activities[C]∥Proc of16th IEEE International Conference on Embedded and Real-time Computing Systems and Applications.Macao:IEEE,2010:43-52.
  • 8Martín H,Bernardos A M,Tarrío P,et al.Enhancing activity recognition by fusing inertial and biometric information[C]∥Proc of the 14th International Conference on Information Fusion.Chicago:IEEE,2011:1-8.
  • 9Alzubi H S,Gerrard-Longworth S,Al-Nuaimy W,et al.Human activity classification using a single accelerometer[C]∥Proc of 14th UK Workshop on Computational Intelligence.Guildford:IEEE,2014:1-6.
  • 10Huang C,Chung C.A real-time model-based human motion tracking and analysis for human computer interface systems[J].Eurasip Journal on Applied Signal Processing,2004,2004(11):1648-1662.

共引文献123

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部