期刊文献+

烧结电镀强浸润管壁结构强化R245fa流动沸腾特性的实验研究

R245fa Flow Boiling Performance in Enhanced Heat Transfer Tube With Sintering and Electroplating Superhydrophilic Composite Coats
原文传递
导出
摘要 实验研究了有机工质R245fa在内径为10 mm的不锈钢光管和烧结电镀多尺度镀层强化管内的流动沸腾传热特性。实验工况为:饱和压力0.6 MPa,质量流速189.3~708.14 kg·s^(-1)·m^(-2),热流密度4.94~44.74 k W·m^(-2),干度0.01~0.9。实验结果表明:实验条件下观测到分层流与环状流两种流型,发现管内多尺度强浸润镀层能够促进环状流的转变提前。与光管相比,烧结电镀多尺度镀层强化管具有明显的强化沸腾换热的效果,其传热强化因子平均为1.87,最大强化效果为3.15。随着热流密度以及干度的增大,传热强化因子先增加后降低。流型可视化对比发现,强化管壁面的强润湿性促进上壁面液相吸附以及快速再浸润,对流动沸腾换热具有积极作用。 R245fa flow boiling performance in a bare stainless-steel tube(BT)and a sintering and electroplating multiscale reinforced tube(SET)with the same inner diameter of 10 mm were investigated experimentally.Experimental conditions were as follows:saturation pressure 0.6 MPa,mass flow 189.3~708.14 kg·s−1·m−2,heat flux 4.94~44.74 kW·m−2,and vapor quality 0.01 to 0.9.Two flow patterns were observed under the experimental conditions,which are stratified flow and annular flow.The multiscale superhydrophilic coats of SET could promote the earlier transition of annular flow.The experimental result indicated that the SET can effectively enhance the heat transfer.The average and maximum values of the heat transfer enhancement ratio(EF)were 1.87 and 3.15,respectively.The EF increased and then decreased with the rising heat flux and vapor quality.The visualization shown that the strong wettability of SET could accelerate the diffusion of R245fa liquid on the tube wall surface,which has a positive effect on flow boiling heat transfer.
作者 曹泷 王光辉 郭家驹 赵露星 杨辉 CAO Shuang;WANG Guanghui;GUO Jiaju;ZHAO Luxing;YANG Hui(College of Energy and Power Engineering,Zhengzhou University of Light Industry,Zhengzhou 450001)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2023年第5期1366-1375,共10页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.51906231) 河南省重点研发与推广专项(No.212102310096) 河南省高等学校重点科研项目(No.20A470012) 郑州轻工业大学众创空间孵化项目(No.2019ZCKJ106)。
关键词 流动沸腾 R245FA 表面浸润性 强化传热 烧结电镀 flow boiling R245fa wettability heat transfer enhancement sintering and electroplating
  • 相关文献

参考文献7

二级参考文献44

  • 1张轶.中外水泥窑纯低温余热发电对比[J].中国建材,2005(6):43-46. 被引量:4
  • 2赵斌,王子兵.热管及其换热器在钢铁工业余热回收中的应用[J].冶金动力,2005(3):34-36. 被引量:18
  • 3张富,张福滨.水泥行业纯低温余热发电技术及现状[J].建材发展导向,2007,5(1):40-47. 被引量:9
  • 4张凤起,金岩,王凤荣,吕英华,邱玉林.我国钢铁工业余热资源及利用状况[J].钢铁,1990,25(4):61-64. 被引量:8
  • 5谭业锋.工业窑炉废气余热的回收与利用研究[D].济南:山东大学,2006.
  • 6李艳,连红奎,顾春伟.有机朗肯循环在工业余热同收中的应用[C].2009年中同动力丁程学会透平专业委员会2009年学术研讨会论文集,2009.
  • 7Latour S R, Menningmann J G, Blaney B L. Waste Heat Recovery Potential in Selected Industries [ R ]. US Environmental Protection Agency-Industrial Environmental Research Laboratory Report. 1982.
  • 8Borsukiewicz-Gozdur A Nowak W. Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle [ J ]. Energy, 2007, 32 (4): 344-352.
  • 9Miller E W, Hendricks T J, Peterson R B. Modeling energy recovery using thermoelectric conversion integrated with an organic Rankine bottoming cycle [ J ]. Journal of Electronic Materials. 2009, 38 (7) : 1206 - 1213.
  • 10Yang J. Opportunities & Challenges of Thermoelectric Waste Heat Recovery in the Automotive Industry [ C ]. Diesel Engine Emissions Reduction (DEER) Conference, Chicago, 2005.

共引文献283

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部