期刊文献+

基于Python数据可视化的水电集控平台主报警信息规则时序匹配与处置模型构建 被引量:1

Construction of Time Sequence Matching and Disposal Model of Main Alarm Information Rules of Hydropower Centralized Control Platform Based on Python Data Visualization
下载PDF
导出
摘要 为实现水电集控平台主报警信息时序匹配和处置,构建了基于Python数据可视化的水电集控平台主报警信息规则时序匹配与处置模型,该模型首先利用通信服务器将水电站设备运行故障信息传输至水电集控平台接收端内后生成故障报警序列;然后依据领域专家匹配规则库内的时序匹配规则匹配水电站故障报警主信息后使用状态函数、状态变化函数等对其进行时序特性分析,利用映射表描述主报警信息时序特性;最后对该主报警信息时序特性展开报警选择、报警处理和处理结果分析后,使用基于Python编程软件对结果进行可视化并发送至调度员控制台内,实现水电集控平台主报警信息规则时序匹配与处置。试验结果表明,该模型具备较好的主报警信息可视化能力,其爬取的主报警信息覆盖率高达98.99%;主报警信息规则时序匹配时的皮尔逊相关系数数值较高,处置主报警信息能力较好。 In order to realize the timing matching and disposing of the main alarm information of the hydropower centralized control platform,a timing matching and disposing model was constructed based on Python data visualization.The model transmitted the fault information of hydropower station equipment to the receiver of hydropower centralized control platform by using communication server,and the fault alarm sequence was generated.After matching the main fault alarm information according to the time sequence matching rules in the domain expert matching rule base,state function and state change function were used to analyze the time sequence characteristics.Then the mapping table was used to describe the timing characteristics of the main alarm information.After analyzing the timing characteristics of the main alarm information,the timing matching and disposal of the main alarm information in the hydropower centralized control platform were realized.Experimental results show that the model has good visualization ability of main alarm information,and the coverage rate of main alarm information crawled by the model is up to 98.99%.The model has higher Pearson correlation coefficient and better ability to deal with the main alarm information.
作者 沙永兵 谌斐鸣 曹德勤 汪涛 吴辉 贺雄 SHA Yong-bing;CHEN Fei-ming;CAO De-qin;WANG Tao;WU Hui;HE Xiong(Wuling Power Corporation Ltd.,Changsha 410000,China;Hunan Wuling Power Technology Co.,Ltd.,Changsha 410004,China)
出处 《水电能源科学》 北大核心 2023年第5期182-186,共5页 Water Resources and Power
基金 五凌电力远程集控应急处置智能管理平台研发(C99007620G201EC139)。
关键词 PYTHON 数据可视化 水电集控平台 信息规则 时序匹配 处置模型 Python data visualization hydropower centralized control platform information rules timing matching disposal model
  • 相关文献

参考文献15

二级参考文献85

共引文献97

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部