期刊文献+

幂次为2和3的整变量非线性型的整数部分

Integral Part of a Nonlinear Form with Square and Cube
下载PDF
导出
摘要 用DavenportGHeilbronn方法证明了混合幂次为2,3,3的素变量非线性型的整数部分表示无穷多素数的问题:假设λ_(1),λ_(2),λ_(3)是非零实数,至少有一个λi/λj(1≤i<j≤3)为无理数,x1,x2,x3是正整数,那么λ_(1)x2^(1)+λ_(2)x3^(2)+λ_(3)x3^(3)的整数部分可表示无穷多素数. In this paper,the Davenport-Heilbronn method is used to prove that the integer part of the nonlinear type of prime variable with mixed powers of 2,3,3 represents infinitely many primes.We show that if λ_(1),λ_(2),λ_(3) are non-zero real numbers,and at least one of the numbersλ/λj(1≤i<j≤3)is irrational,then the integer parts of λ_(1) x 2^(1)+λ_(2) x 3^(2)+λ_(3) x 3^(3) are prime infinitely often for integers x 1,x 2,x 3.
作者 寇晨阳 KOU Chen-yang(School of Mathematics and Statistics,North China University of Water Resources and Electric Power,Zhengzhou 450046,China)
出处 《兰州文理学院学报(自然科学版)》 2023年第3期1-7,共7页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
关键词 素数变量 丢番图逼近 Davenport-Heilbronn方法 primes Diophantine approximation Davenport-Heilbronn method
  • 相关文献

参考文献1

二级参考文献10

  • 1Davenport H., Helbronn H., On indefine quadratic forms in five variables, J. London Math. Soc., 1946, 21: 185-193.
  • 2Watson G. L., On indefinite quadratic forms in five variables, Proc. London Math. Soc., 1953, 3: 170-182.
  • 3Bambah R. P., Four squares and a kth power, Quart. J. Math. Oxford, 1954, 5: 191-202.
  • 4Davenport H., Roth K. F., The solubility of certain diophantine inequalities, Mathematika, 1955, 2: 81-96.
  • 5Cook R. J., Diophantine inequalities with mixed powers, II, J. Number Theory, 1979, 11 (1): 49-68.
  • 6Briidern J.( Kawada K., Wooiey T. D., Additive representation in thin sequences, VIII: Diophantine inequal- ities in review, Series on Number Theory and Its Applications, 2010, 6: 20-7"9.
  • 7Vaughan R. C., A new iterative method in Waring's problem, Acta Math., 1989, 162:1 71.
  • 8Briidern J., Perelli A., The addition of primes and power, Can. J. Math., 1996, 48(3): 512-526.
  • 9Vaughan R. C., The Hardy-Littlewood Method, Second Edition, Cambridge Tracts in Mathematics, Vol. 125, Cambridge University Press, Cambridge, 1997.
  • 10Briidern J., Kawada K., Wooley T. D., Additive representation in thin sequences, I: Waring's problem for cubes, Ann. Scient. Ec. Norm. Sup., 2001, 34:471 501.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部