期刊文献+

基于深度学习的甲状腺癌病理图像分级方法 被引量:1

Automatic grading of pathological images of thyroid cancer based on deep learning
下载PDF
导出
摘要 针对日益增长的甲状腺癌早期诊断的需求,基于深度学习方法,在EfficientNet网络的基础上结合CA注意力机制,进行甲状腺癌病理图像自动分级方法研究。实验结果显示,CA-EfficientNet网络模型的精确率达到96.6%,证明了基于CA-EfficientNet网络的甲状腺癌病理图像自动分级算法的先进性,基于该算法实现的自动辅助诊断系统具有实际应用性,可有效降低病理医生工作负担,并降低因疲劳等主观因素造成的人工诊断误诊率。 In response to the increasing demand for early diagnosis of thyroid cancer,a deep learning based method is proposed for the automatic grading of the pathological images of thyroid cancer through EfficientNet combined with CA-Net.The experimental results show that the accuracy of CA-EfficientNet model is up to 96.6%,which proves the algorithm superiority in the automatic grading of the pathological images of thyroid cancer.The automatic auxiliary diagnosis system implemented based on the proposed algorithm is applicable in practice for it can effectively reduce the workload of pathologists and reduce the rate of misdiagnosis caused by subjective factors such as fatigue.
作者 曹莉凌 蒋坷宏 曹守启 蒋伏松 CAO Liling;JIANG Kehong;CAO Shouqi;JIANG Fusong(College of Engineering Science and Technology,Shanghai Ocean University,Shanghai 201306,China;Department of Endocrinology and Metabolism,Shanghai Sixth People's Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200233,China)
出处 《中国医学物理学杂志》 CSCD 2023年第5期580-588,共9页 Chinese Journal of Medical Physics
基金 浦东新区科技发展基金(PKJ2019-Y03)。
关键词 深度学习 甲状腺癌 卷积神经网络 全切片数字化图像 图像分级 deep learning thyroid cancer convolutional neural network whole slide image image grading
  • 相关文献

参考文献7

二级参考文献73

  • 1董舒,常才.超声引导下甲状腺细针穿刺活检的研究与进展[J].中华医学超声杂志(电子版),2013,10(6):433-436. 被引量:29
  • 2Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer [J]. Thyroid, 2009, 19(11): 1167-1214.
  • 3Moon HJ, Sou E, Kim EK, et al. The diagnostic values of ultrasound and ultrasound-guided fine needle aspiration in subcentimeter-sized thyroid nodules [J]. Ann Surg Oncol, 2012, 19(1): 52-59.
  • 4Kim DW, Lee EJ, Kim SH, et al. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules: comparison in efficacy according to nodule size [J]. Thyroid, 2009, 19(1): 27-31.
  • 5Kim DW, Park AW, Lee E J, et al. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules smaller than 5 mm in the maximum diameter: assessment of efficacy and pathological findings [J]. Korean J Radiol, 2009, 10(5): 435-440.
  • 6Lee MJ, Hong SW, Chung WY, et al. Cytological results of ultrasound- guided fine-needle aspiration cytology for thyroid nodules: emphasis on correlation with sonographic findings [J]. Yonsei Med J, 2011, 52(5): 838-844.
  • 7Frates MC, Benson CB, Charboneau JW, et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement [J]. Radiology, 2005, 237(3): 794-800.
  • 8Mazzaferri EL, Sipos J. Should all patients with subcentimeter thyroid nodules undergo fine-needle aspiration biopsy and preoperative neck ultrasonography to define the extent of tumor invasion? [J]. Thyroid,2008, 18(6): 597-602.
  • 9Yoon JH, Moon H J, Kim EK, et al. Inadequate cytology in thyroid nodules: should we repeat aspiration or follow-up? [J]. Ann Surg Oncol, 2011, 18(5): 1282-1289.
  • 10Shrestha M, Crothers BA, Butch HB. The impact of thyroid nodule size on the risk of malignancy and accuracy of fine-needle aspiration: a 10-year study from a single institution [J]. Thyroid, 2012, 22(12): 1251-1256.

共引文献313

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部