期刊文献+

低剂量CT图像的噪声提取研究

Study on Noise Extraction from Low-Dose CT Images
下载PDF
导出
摘要 为了解决CT辐射剂量降低时重建图像质量低的问题,研究了基于StyleGAN2 GAN学习对给定噪声图像的噪声提取,采用从训练的GAN模型中采样大量噪声块的方法,提取噪声特征而不是噪声图像。通过引入轻量级Squeeze-and-Excitation(SE)模块可以更好地为图像不同部分分配权重,使得浅层网络的局部信息在图像分割时能够很好地分割边缘细节图像,深层网络输出的特征图可以捕捉同一幅图像的不同尺度信息。实验结果表明,采用本文方法处理低剂量CT图像的细节还原度真实、局部器官光滑性较好。 To solve the problem of low quality reconstructed images when the radiation dose of CT is degraded,noise extraction based on StyleGAN2 GAN learning for a given noisy image is investigated.This paper employs an approach that samples a large number of noise extraction from the trained GAN model to extract noise features instead of noisy images.By introducing a light-weight Squeeze-and-Excitation(SE)module to better assign weights to different sections of the image,the local information from the shallow network can segment the edge-detail image well during image segmentation,and the feature maps output from the deep network can capture different scale information of the same image.The experimental results show that the low-dose CT images processed using the approach described in this paper have realistic detail reproduction and better local organ smoothness.
作者 焦枫媛 杨志秀 方帆 刘祎 桂志国 JIAO Fengyuan;YANG Zhixiu;FANG Fan;LIU Yi;GUI Zhiguo(School of Information and Communication Engineering,North University of China,Taiyuan 030051,China;Unit 32382,PLA,Beijing 100072,China)
出处 《测试技术学报》 2023年第3期249-252,259,共5页 Journal of Test and Measurement Technology
基金 山西省自然科学基金资助项目(202203021211100)。
关键词 低剂量CT图像 降噪 StyleGAN2 GAN 纹理保持 low-dose CT images noise reduction StyleGAN2 GAN texture preservation
  • 相关文献

参考文献6

二级参考文献39

  • 1DeOk Z, Grimm JM, Treitl M, et al. Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: An experimental clinical study[J]. Radiology, 2013, 266(1): 197-206.
  • 2Fin L, Bailly P, Daouk J, et al. A practical way to improve contrast-to-noise ratio and quantitation for statistical-based iterative reconstruction in whole-body PETimaging[J]. Medical Physics, 2009, 36(7): 3072-3079.
  • 3Thibault JB, Sauer KD, Bouman CA, et al. A Three-dimensional statistical approach to improved image quality for multislice helical CT[J]. Medical Physics, 2007, 34(11): 4526-4544.
  • 4Silva AC, Lawder HJ, Hara A, et al. Innovations in CT dose reduction strategy: Application of the adaptive statistical iterative reconstruction algorithm[J]. American Journal of Roentgenology, 2010, 194(1): 191-199.
  • 5Yukimura Y, Isotani K, Uto T, et al. The characteristic of the image by image reconstruction method applied to successive approximation method[J]. Nihon Hoshasen Gijutsu Gakkaizasshi, 2012, 68(11): 1508-1518.
  • 6Rampado O, Bossi L, Garabello D, et al. Characterization of a computed tomography iterative reconstruction algorithm by image quality evaluations with an anthropomorphic phantom[J]. European Journal of Radiology, 2012, 81(11): 3172-3177.
  • 7Marin D, Nelson RC, Schindera ST, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT: Improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm-initial clinical experience[J]. Radiology, 2010, 254(1) : i45-153.
  • 8Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study[J]. Lancet, 2012, 380(9840): 499-505.
  • 9Rapalino O, Kamalian S, Kamalian S, et al. Cranial CT with adaptive statistical iterative reconstruction: Improved image quality with concomitant radiation dose reduction[J]. American Journal of Neuroradiology, 2012, 33(4): 609-615.
  • 10Kilic K, Erbas G, Guryildirim M, et al. Lowering the dose in head CT using adaptive statistical iterative reconstruction[J]. American Journal of Neuroradiology, 2011, 32(9): 1578-1582.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部