期刊文献+

Decomposition of Al_(13) promoted by salicylic acid under acidic condition: Mechanism study by differential mass spectrometry method and DFT calculation

原文传递
导出
摘要 Decomposition of the polycation Al_(13)O_(4)(OH)_(2)4(H_(2)O)_(12)^(7+)(Al_(13)) promoted by ligand is a vital subject to advance our understanding of natural and artificial occurrence and evolution of aluminum ions,especially in the case of acidic condition that dissolved Al^(3+)species can be released from the Al-bearing substances.However,the microscopic pathway of synchronous proton-promoted and ligand-promoted decomposition process for Al_(13)is still in the status of ambiguity.Herein,we applied differential mass spectrometry method and DFT calculation to study the initial detailed process of Al_(13)decomposition under the presence of proton and salicylic acid (H_(2)Sal).Mass results showed that the mononuclear Al^(3+)-H_(2)Sal complexes dominated the resulting Al species,whereas the monodentate complex Al_(13)HSal6+was not observed in the spectra.The difference of decomposition levels between the ligand/Al ratio 0.2 and 0.5 cases revealed that proton and ligand performed synergistic effect in initial Al_(13)decomposition process,and the proton transfer determined the ring closure efficiency.The ring closure reaction is the prerequisite for the collapse of Al_(13)structure and detachment of the mononuclear complex.DFT calculations reveal that hydrogen bond plays an important role in inducing the formation of chelated complex accompanying proton transfer.Attachment of protons at the bridging OH^(-)can elongate and weaken the critical bond between targeted Al^(3+)and μ4-O_(2)-resulting from delocalization of electron pairs in the oxygen atom.These results demonstrate the detailed mechanism of Al_(13)composition promoted by ligand and proton,and provide significant understanding for further application and control of Al_(13).
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第4期423-433,共11页 环境科学学报(英文版)
基金 financially supported by the National Natural Science Foundation of China (Nos.52030003 and 51778604)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部