摘要
Indoor particle release from toner printing equipment (TPE) is a major health concern and has received wide attention.In this study,nine printing centers were randomly selected and three working phases were simulated,namely,non-working,normal printing/copying,and heavy printing/copying.The dynamics of the ozone (O_(3)),volatile organic compound (VOC),and particle emissions from TPE were determined by portable detectors.Results showed that particles,VOCs,and O_(3)were indeed discharged,and particles and VOCs concentrations remained at high levels.Among them,44%of the rooms represented high-level particle releases.Submicrometer-sized particles,especially nanoparticles,were positively correlated with VOCs,but were inversely proportional to the O_(3)concentration.Four elements,Ca,Al,Mg and Ni,were usually present in nanoparticles because of the discharge of paper.Si,Al,K,Ni and Pb were found in the submicrometer-sized particles and were consistent with the toner composition.The potential particle precursors were identified,which suggested that styrene was the most likely secondary organic aerosol (SOA) precursor.Overall,the use of the toner formulation and the discharge of paper attribute to the TPE-emitted particles,in which styrene is a specific monitoring indicator for the formation of SOA.
基金
supported by the National Natural Science Foundation of China (No.81973003)
the Army Logistics Research Plan of China (No.AEP14C001)。