期刊文献+

Preparation and photocatalytic performance study of dual Z-scheme Bi_(2)Zr_(2)O_(7)/g-C_(3)N4/Ag_(3)PO_(4) for removal of antibiotics by visible-light 被引量:2

原文传递
导出
摘要 At present,the high re-combination rate of photogenerated carriers and the low redox capability of the photocatalyst are two factors that severely limit the improvement of photocatalytic performance.Herein,a dual Z-scheme photocatalyst bismuthzirconate/graphitic carbon nitride/silver phosphate (Bi_(2)Zr_(2)O_(7)/g-C_(3)N4/Ag_(3)PO_(4)(BCA)) was synthesized using a co-precipitation method,and a dual Z-scheme heterojunction photocatalytic system was established to decrease the high re-combination rate of photogenerated carriers and consequently improve the photocatalytic performance.The re-combination of electron-hole pairs(e-and h+) in the valence band (VB) of g-C_(3)N4increases the redox potential of e-and h+,leading to significant improvements in the redox capability of the photocatalyst and the efficiency of e--h+separation.As a photosensitizer,Ag_(3)PO_(4)can enhance the visible light absorption capacity of the photocatalyst.The prepared photocatalyst showed strong stability,which was attributed to the efficient suppression of photo-corrosion of Ag_(3)PO_(4)by transferring the e-to the VB of g-C_(3)N4.Tetracycline was degraded efficiently by BCA-10%(the BCA with 10 wt.%of AgPO_(4)) under visible light,and the degradation efficiency was up to 86.2%.This study experimentally suggested that the BCA photocatalyst has broad application prospects in removing antibiotic pollution.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第3期349-361,共13页 环境科学学报(英文版)
基金 the financial support provided by the Shandong University Cross Project fund (No.2016JC003)。
  • 相关文献

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部