期刊文献+

基于差分进化策略的天牛须搜索算法及其应用 被引量:3

A beetle antennae search algorithm based on differential evolution strategy and its application
下载PDF
导出
摘要 针对天牛须搜索(BAS)算法收敛结果高度依赖单个个体、勘探能力弱、容易陷入局部最优解的问题,提出一种基于差分进化策略的天牛须搜索(BASD)算法。该算法使用佳点集方法初始化天牛种群,提高了算法的种群多样性;引入动态差分进化思想,设计了一种精英演化竞争指导策略,较好地平衡了算法的开采和勘探能力。通过14个基准函数对BASD算法进行测试,并与几种先进智能优化算法的优化结果进行比较。结果显示,BASD算法的优化性能整体更好。将BASD算法应用于图像增强中,结果表明,使用BASD算法增强后的图像灰度分布更均匀、分布范围更大。 Considering that the convergence of beetle antennae search algorithm(BAS)is of highly individual dependence,poor exploration ability and easily falling into local optimal solution,a beetle antennae search algorithm based on differential evolution strategy(BASD)is proposed.The algorithm not only uses the good point set method to initialize the beetle population to enhance the population diversity,but also introduces the concept of dynamic differential evolution to an elite evolutionary competition guidance strategy,which better balances the mining and exploration capabilities of the algorithm.The BASD algorithm is tested on 14 benchmark functions and compared with the optimization results of several advanced algorithms.The results show that the overall optimization performance of the BASD algorithm is better.Finally,the BASD algorithm is applied in image enhancement,and the result shows that the gray distribution of the image enhanced by the BASD algorithm is more uniform and the distribution range is larger.
作者 叶坤涛 舒蕾蕾 李文 侯春菊 YE Kun-tao;SHU Lei-lei;LI Wen;HOU Chun-ju(School of Science,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《计算机工程与科学》 CSCD 北大核心 2023年第5期920-930,共11页 Computer Engineering & Science
基金 国家自然科学基金(11547026)。
关键词 天牛须搜索 差分进化 佳点集理论 图像增强 beetle antennae search differential evolution theory of good point set image enhancement
  • 相关文献

参考文献7

二级参考文献68

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 2朱凯军,周焰,兰祖送.基于区域分割的雾天图像增强算法[J].计算机测量与控制,2006,14(5):661-663. 被引量:15
  • 3冯翔,陈国龙,郭文忠.粒子群优化算法中加速因子的设置与试验分析[J].集美大学学报(自然科学版),2006,11(2):146-151. 被引量:22
  • 4Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proc IEEE Int Conf on Neural Networks. Perth: Perth IEEE Press, 1995: 1942-1948.
  • 5Shi Yuhui, Eberhart R. Parameter Selection in Particle Swarm Optimization[C]//IEEE Proc of the 7th Annual Conf on Evolutionary Programming. Washington: Springer-Verlag, 1998: 591-600.
  • 6Kenneay J, Eherhart R, Sift Yuhui. Swarm Intelligence[M]. San Francisco: .Morgan Kaufman, 2001.
  • 7Wang Hui, Qian Feng. Improved PSO-based Multi-Objective Optimization Using Inertia Weight and Acceleration Coefficients Dynamic Changing, Crowding and Mutation [C] //Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing: IEEE, 2008: 4479-4484.
  • 8Juan C, Cabrera F, Carlos A, et al. Handling Constraints in Particle Swarm Optimization Using a Small Population Size [C]//MICAI 2007: Advouees in Artificial Intelligence. Aguasealientes: IEEE, 2007: 41-45.
  • 9TUBBS J D. A note on parametric image enhancement [J]. Pattern Recognition, 1987, 20 (6): 617-621.
  • 10Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources [A]. Seoul, Korea: Proc IEEE Int'i Conf on Evolutionary Computation [C]. 2001:81 - 86.

共引文献184

同被引文献39

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部