期刊文献+

基于小波阈值算法的中心静脉压信号去噪研究

Study on Denoising of Central Venous Pressure Signal Based on Wavelet Threshold Algorithm
下载PDF
导出
摘要 为去除无创中心静脉压监测仪采集的中心静脉压信号中的噪声,提出了一种基于小波阈值的去噪算法。针对采集过程中出现的基线漂移和高频噪声,通过选取合适的小波基、小波分解层数和阈值方法,对中心静脉压信号进行小波阈值处理,并与经过傅里叶变换和维纳滤波去噪后的结果进行对比。在信噪比、均方根差等评价指标上,小波阈值的效果更好。选择sym3小波基对中心静脉压信号进行6层小波分解,设置硬阈值所得到的效果更好。该算法能够有效去除采集过程中产生的噪声信号,信噪比达到90.1942dB,均方根差接近0,与其他算法相比去噪效果更好。 In order to remove the noise in the central venous pressure signal collected by the non-invasive central venous pressure monitor,a wavelet threshold based denoising algorithm is proposed.Aiming at the baseline drift and high-lrequency noise during the acquisition process,the wavelet threshold treatment of the central venous pressure signal was performed by selecting the appropriate wavelet base,wavelet decomposition layer and threshold method,and compared with the results after denoising by Fourier transform and Wiener filter.In terms of signal-to-noise ratio and rms difference,the wavelet threshold has a better effect.Selecting the Sym3 wavelet base for 6-layer wavelet decomposition of the central venous pressure signal,and setting the hard threshold is better.The algorithm can effectively remove the noise signal generated during the acquisition process,the signal-to-noise ratio reaches 90.1942 dB,and the rms difference is close to 0,which has a better denoising effect than other algorithms.
作者 董雨荷 张磊 刘永伟 殷腾超 郑一博 DONG Yuhe;ZHANG Lei;LIU Yongwei;YIN Tengchao;ZHENG Yibo(Hebei University of Geosciences,Shijiazhuang Hebei 050031,China;Hebei JinKangAn Medical Device Technology Co.,Ltd.,Shijiazhuang Hebei 050035,China)
出处 《信息与电脑》 2023年第5期77-80,共4页 Information & Computer
基金 石家庄市科技计划项目“基于近红外光谱技术的无创颈静脉血氧监测系统研发”(项目编号:221200063A)。
关键词 中心静脉压 去噪 小波阈值 小波基 central venous pressure denoising wavelet threshold wavelet
  • 相关文献

参考文献5

二级参考文献17

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部