期刊文献+

个性化推荐算法的分析与改进

Analysis and Improvement of Personalized Recommendation Algorithm
下载PDF
导出
摘要 大数据背景下,一般使用推荐算法获取目标用户。基于此,通过对各类推荐算法进行分析,比较各类算法的优缺点,并针对各类算法的特点和不足,提出一种混合推荐算法。首先,为解决算法初期的冷启动现象,将主题模型与协同过滤算法相结合,生成用户偏好概率预测矩阵;其次,为改善用户过少造成的稀疏性问题,采用聚类算法填充评分矩阵;最后,为进一步提高推荐精确度,改进各项权重参数,生成融合主题模型和协同过滤推荐算法的混合推荐方法。 In the context of big data,recommendation algorithms are generally used to obtain target users.Based on this,by analyzing various recommendation algorithms,comparing their advantages and disadvantages,and aiming at the characteristics and disadvantages of various algorithms,a hybrid recommendation algorithm is proposed.Firstly,the topic model is combined with the collaborative filtering algorithm to generate the user preference probability prediction matrix.Secondly,a clustering algorithm is used to fill the scoring matrix.Finally,a hybrid recommendation method combining the theme model and collaborative filtering recommendation algorithm was generated.
作者 赵棣 ZHAO Di(Shandong University of Engineering and Vocational Technology,Jinan Shandong 250200,China)
出处 《信息与电脑》 2023年第5期81-83,共3页 Information & Computer
关键词 主题模型 协同过滤 混合推荐 聚类算法 theme model collaborative filtering mixed recommendation clustering algorithm
  • 相关文献

参考文献2

二级参考文献53

  • 1王自强,冯博琴.个性化推荐系统中遗漏值处理方法的研究[J].西安交通大学学报,2004,38(8):808-810. 被引量:4
  • 2邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 3李超然,徐雁斐,张亮.协同推荐pLSA模型的动态修正[J].计算机工程,2005,31(20):46-48. 被引量:1
  • 4Schafer J B, Konstan J A, Riedl J. E - commerce Recommendation Applications [ J ]. Data Mining and Knowledge Discovery, 2001, 5(1 -2) : 115 - 153.
  • 5Karypis G. Evaluation of Item - based Top - n Recommendation Algorithms[ C ]. In: Proceedings of the 10th International Conference on Information and Knowledge Management. New York : ACM Press, 2001 : 247 - 254.
  • 6Rashid A M, Lain S K, Karypis G, et al. ClustKNN: A Highly Scalable Hybrid Model - & Memory - based CF Algorithm [ C ]. In: Proceedings of the KDD Workshop on Web Mining and Web Usage Analysis. 2006.
  • 7Linden G, Smith B, York J. Amazon. com Recommendations: Item -to- item Collaborative Filtering [J]. IEEE Internet Computing, 2003, 7(1): 76-80.
  • 8Sarwar B M, Karypis G, Konstan J A, et al. Application of Dimensionality Reduction in Recommender System--A Case Study [ C ]. In : Proceedings of ACM Web KDD Workshop. Minneapolis : University of Minnesota, 2000.
  • 9Sarwar B M, Karypis G, Konstan J, et al. Recommender Systems for Large - scale E - commerce : Scalable Neighborhood Formation Using Clustering[ C ]. In : Proceedings of the 5th International Conference on Computer and Information Technology. 2002.
  • 10Chee S H S, Hart J, Wang K. RecTree : An Efficient Collaborative Filtering Method [ C ]. In: Proceedings of the 3 rd International Conference on Data Warehousing and Knowledge Discovery. London: Springer - Verlag, 2001 : 141 - 151.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部