摘要
近年来,人像抠图在计算机视觉领域取得了许多进展。作为底层视觉任务,人像抠图具有较高计算量,导致模型难以部署在计算资源有限的设备上。针对该问题,文章提出自适应和固定比例相结合的剪枝方法,对人像抠图网络MODNet进行压缩。实验表明,该方法可以基本保持模型精度,将MODNet参数量和计算量分别降低了79.22%和76.09%,在中央处理器(Central Processing Unit,CPU)和NSC2上的推理速度分别提高了93%和65%。
In recent years,portrait matting has made many advances in the field of computer vision.As a low-level visual task,portrait matting has a high computation cost,which makes it difficult to deploy models on devices with limited computing resources.To address this problem,this paper proposes a pruning method combining adaptive and fixed-ratio to achieve compression of MODNet.Experiments show that the method reduces the parameter and computation cost of MODNet by 79.22%and 76.09%,while maintaining the accuracy of the model.Additionally,the inference speed on Central Processing Unit(CPU)and NSC2 increased by 93%and 65%.
作者
陈宏斌
朱周
高骏
李文锋
路梅
CHEN Hongbin;ZHU Zhou;GAO Jun;LI Wenfeng;LU Mei(School of Software Engineering,Jinling Institute of Technology,Nanjing Jiangsu 211169,China)
出处
《信息与电脑》
2023年第5期84-87,共4页
Information & Computer
基金
江苏省大学生创新训练计划“基于边缘计算的视频人像抠图”(项目编号:202213573017Z)。
关键词
人像抠图
模型剪枝
过滤器
计算量
portrait matting
model pruning
filters
computation cost