期刊文献+

In-orbit performance of ME onboard Insight-HXMT in the first 5 years

原文传递
导出
摘要 Introduction The medium-energy X-ray telescope(ME)is a collimated X-ray telescope onboard the Insight hard X-ray modulation telescope(Insight-HXMT)satellite.It has 1728 Si-PIN pixels readout using 54 low noise application-specific integrated circuits(ASICs).ME covers the energy range of 5–30 keV and has a total detection area of 952cm2.The typical energy resolution of ME at the beginning of the mission is 3 keV at 17.8 keV(full width at half maximum,FWHM),and the time resolution is 255μs.In this study,we present the in-orbit performance of ME in its first 5 years of operation.Methods The performance of ME was monitored using onboard radioactive sources and astronomical X-ray objects.ME carries six 241Am radioactive sources for onboard calibration,which can continuously illuminate the calibration pixels.The long-term performance evolution of ME can be quantified using the properties of the accumulated spectra of the calibration pixels.In addition,observations of the Crab Nebula and the pulsar were used to check the long-term evolution of the detection efficiency as a function of energy.Conclusion After 5 years of operation,742cm2 of the Si-PIN pixelswere stillworking normally.The peak positions of 241Am emission lines gradually shifted to the high-energy region,implying a slow increase in ME gain of 1.43%.A comparison of the ME spectra of the Crab Nebula and the pulsar shows that the E–C relations and the redistribution matrix file are still acceptable for most data analysis works,and there is no detectable variation in the detection efficiency.
出处 《Radiation Detection Technology and Methods》 CSCD 2023年第1期15-24,共10页 辐射探测技术与方法(英文)
基金 support from the National Program on Key Research and Development Project(Grant No.2021YFA0718500)from the Ministry of Science and Technology of China(MOST) The authors thank supports from the National Natural Science Foundation of China under Grants 12273043,U1838201,U1838202,U1938109,U1938102,U1938108,and U2038109 This work was partially supported by the International Partnership Program of the Chinese Academy of Sciences(Grant No.113111KYSB20190020).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部