期刊文献+

单位分数跨集中阻尼弦本征解的结构及其性质 被引量:1

Structure and Properties of Eigensolutions of a Taut String with a Lumped Damping at a Unit-Fraction-Span
下载PDF
导出
摘要 针对斜拉索-阻尼(器)系统,推导出阻尼(器)位于任意单位分数跨时(拉索1/n跨位置)系统超越频率方程的代数形式,根据代数基本定理讨论了系统本征解的结构,并结合4个算例分析解的性质.结果表明:1)本征解可归为n-1个解支.2)对于同一解支,各阶本征值实部(其相反数即单位时间对数衰减率)均相同,各阶本征值虚部(即频率)构成等差数列.3)根据频率随阻尼系数变化的特点,解支可分为三类:第一类解支的频率均依赖于阻尼;第二类解支的频率均不受阻尼影响;第三类解支的频率随阻尼系数的不同,具有第一类解支或第二类解支的特点,即随阻尼系数的增大,频率先随阻尼系数变化,到达某一临界值后为常数. For the cable-damper system,the algebraic form of the transcendental frequency equation of the sys⁃tem is derived when the damper is located at a unit-fraction-span(1/n span of the cable).According to the funda⁃mental theorem of algebra,the structure of the eigensolutions of the system is discussed,and the properties of the so⁃lution are analyzed with four examples.The results show that:1)The eigensolutions can be divided into n-1 branches.2)Within one solution branch,all eigenvalues take an identical value in their real part(as an additive in⁃verse of the logarithmic decrement ratio per unit time),while their imaginary parts(meaning in physics,the fre⁃quency)form an arithmetic sequence.3)According to the way that the frequencies vary with the damping,the solu⁃tion branches can be classified as three types:The frequency of type 1 solutions is related on damping;The fre⁃quency of type 2 solutions is not affected by damping.The frequency of type 3 solutions may or may not vary with the damping,which means that a type 3 solution may behave like a type 1 or a type 2 solution,depending on the damp⁃ing is under or over some certain critical value.
作者 郑罡 王梦丽 廖伟 张晓东 ZHENG Gang;WANG Mengli;LIAO Wei;ZHANG Xiaodong(Co-constructing State Key Laboratory of Mountain Bridge and Tunnel Engineering by Province and Ministry(Chongqing Jiaotong Uni-versity),Chongqing 400074,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第5期95-101,共7页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(51978112,51478072) 重庆交通大学研究生科研创新项目(CYS22394)。
关键词 拉索-阻尼(器)系统 本征解 解的结构 string cable-damper system eigensolution structure of solution
  • 相关文献

参考文献7

二级参考文献21

  • 1朱文正,刘健新.粘性剪切型阻尼器性能试验研究[J].广州大学学报(自然科学版),2005,4(6):526-531. 被引量:2
  • 2王修勇,陈政清,倪一清,胡建华.环境激励下斜拉桥拉索的振动观测研究[J].振动与冲击,2006,25(2):138-144. 被引量:17
  • 3陈文礼,李惠.黏滞阻尼器对拉索参数振动的控制分析[J].地震工程与工程振动,2007,27(2):137-144. 被引量:11
  • 4刘慈军.斜拉桥拉索风致振动研究,博士学位论文[M].上海:同济大学,1999..
  • 5李寿英,顾明,陈政清.阻尼器对拉索风雨激振的控制效果研究[J].工程力学,2007,24(8):1-8. 被引量:15
  • 6C Boston,F Weber,L Guzzella.Optimal semi-active damping of cables with bending stiffness[J].Smart Materials and Structures.2011(5)
  • 7F Weber,C Boston.Clipped viscous damping with negative stiffness for semi-active cable damping[J].Smart Materials and Structures.2011(4)
  • 8F. Weber,G. Feltrin,M. Ma?lanka,W. Fobo,H. Distl.Design of viscous dampers targeting multiple cable modes[J].Engineering Structures.2009(11)
  • 9F Weber,H Distl,G Feltrin,M Motavalli.Cycle energy control of magnetorheological dampers on cables[J].Smart Materials and Structures.2009(1)
  • 10Steen Krenk.Complex modes and frequencies in damped structural vibrations[J].Journal of Sound and Vibration.2003(4)

共引文献64

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部