期刊文献+

基于神经网络的红外目标分类算法设计与应用

Design and application of infrared target classification algorithm based on neural network
下载PDF
导出
摘要 卷积神经网络在图像处理领域取得了突出表现,但是由于算法庞大的计算量引起功耗高和实时性差的问题导致神经网络的实际应用受到一定限制。如果将神经网络移植在FPGA硬件平台,可充分发挥其高度并行的优势实现网络加速,降低功耗并提升算法实时性。基于上述描述,本文将用于目标分类的网络模型成功移植在FPGA上,通过对比加入分类模型前后的告警结果,说明分类模型设计的重要性。对比硬件实现与仿真结果,证明硬件实现的正确性。 Convolution neural network has made outstanding achievements in the field of image processing.However,the huge amount of computation in the algorithm leads to higher power consumption and poor real-time performance,which limits the practical application of neural networks.If the neural network is transplanted to the FPGA hardware platform,it can give full play to its highly parallel advantages to achieve network acceleration,reduce power consumption,and improve the real-time performance of the algorithm.In this paper,the network model for target classification is successfully translated to FPGA.By comparing the alarm results before and after adding the classification model,which shows the importance of the designed model.By comparing the hardware implementation with the simulation results,the correctness of the hardware implementation is proved.
作者 李凯峰 史馨菊 黄静颖 于子涵 LI Kai-feng;SHI Xin-ju;HUANG Jing-ying;YU Zi-han(North China Research Institute of Electro-Optics,Beijing 100015,China;Management Training Center of State Grid Jibei Electric Power Company,Beijing 102401,China)
出处 《激光与红外》 CAS CSCD 北大核心 2023年第5期792-800,共9页 Laser & Infrared
关键词 卷积神经网络 目标分类 FPGA 网络加速 convolution neural network target classification FPGA network acceleration
  • 相关文献

参考文献5

二级参考文献47

  • 1周杰,彭嘉雄,丁明跃.方向小波变换及其在运动弱目标检测中的应用[J].信息与控制,1996,25(1):21-27. 被引量:5
  • 2周杰,彭嘉雄,丁明跃,刘小平.基于小波变换的运动点目标检测方法[J].宇航学报,1996,17(3):20-24. 被引量:9
  • 3XilinxCorporation. Virtex-II Pro and Virtex-II Pro X FPGA User Guide [ M ]. Xilinx Corporation, 2007 - 11 : 123 - 141.
  • 4Rafael C Gonzalez, Richard E Woods, Steven L Eddins. Digital image processing using MATLAB [ M ].阮秋琦,译.北京:电子工业出版社,2006:276-280.
  • 5薛东辉,朱耀庭,朱光喜,熊艳.一种基于广义多尺度分形参数的小目标检测方法[J].通信学报,1997,18(6):70-75. 被引量:11
  • 6Charlene E C,Jerry S. Optimization of point target track-ing filters [ J ]. IEEE Trans. Aerosp. Electron. Syst. , 2000,36(1) :15 -25.
  • 7J Shaik,K M Iftekharuddin. Detection and tracking of tar-gets in infrared images using Bayesian techniques [ J ].Optics & Laser Technology ,2009 ,41 (6) :832 ~ 842.
  • 8Ali Borji, Laurent Itti. Exploiting local and global patch rari-ties for saliency detection[ J]. IEEE Conference on ComputerVision and Pattern Recognition ,2012 :478 -485.
  • 9Li J,Martin D L, An X J, et al. Visual saliency based onscale-space analysis in the frequency domain [ J ]. IEEETransactions on Pattern Analysis and Machine Inteli-gence,2013,35(4) ;996 - 1010.
  • 10Houssem Chatbri, Keisuke Kameyama. Using scale spacefiltering to make thinning algorithms robust against noisein sketch images f J ]. Pattern Recognition Letters, 2014,42(4) :1 -10.

共引文献1786

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部