期刊文献+

基于改进蛙跳算法的多无人机协同任务分配研究 被引量:1

Research on Multi-UAV Collaborative Task Allocation Based on ISFLA
下载PDF
导出
摘要 针对多无人机协同任务分配问题,提出了一种基于Levy飞行的改进随机蛙跳算法用于解决多无人机的协同任务预分配问题,通过引入动态跳跃步长、Levy飞行因子和族群认知因子有效改进了算法的搜索性能,提高了搜索效率。针对多无人机协同执行任务时可能遭遇的突发任务,通过引入市场拍卖机制提高了算法的计算收敛效率。通过仿真算例分析,验证了改进的随机蛙跳算法解决多无人机协同任务分配问题的有效性。 To solve the problem of collaborative task allocation for multi-UAVs,an improved shuffle frog leaping algorithm(ISFLA)based on Levy flight is proposed to solve the problem of collaborative task pre-allocation for multi-UAVs.Firstly,the dynamic leap steps,Levy flight factors and population cognition factors are introduced to improve the search performance of the algorithm effectively.The search efficiency is improved.Secondly,according to the pop-up task encountered during the execution of the collaborative task of multi-UAV,the calculation convergence rate of the algorithm is improved by introducing the market auction mechanism.Finally,a simulation example is given to verify the effectiveness of the improved shuffle frog leaping algorithm to solve the problem of multi-UAV collaborative task allocation.
作者 张耀中 赵雪芳 丰文成 ZHANG Yaozhong;ZHAO Xuefang;FENG Wencheng(School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710072,China)
出处 《火力与指挥控制》 CSCD 北大核心 2023年第4期52-58,64,共8页 Fire Control & Command Control
基金 航空科学基金资助项目(2017ZC53033)。
关键词 多无人机协同任务 任务分配 随机蛙跳算法 拍卖机制 multi-UAV cooperative task task allocation shuffle frog leaping algorithm auction mechanism
  • 相关文献

参考文献4

二级参考文献69

  • 1Woolridge M. An introduction to multiagent systems [M]. New York: John Wiley & Sons, 2002: 1-10.
  • 2Same D, Hadad M, Kraus S. Auction equilibrium strategies for task allocation in uncertain environments [C]//Proc of Eureopean Conference on Artificial Intelligence. Berlin: Springer, 2004:271-285.
  • 3Same I D, Kraus S. Solving the auction-based task allocation problem in an open environment[C]//Proc of Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference. Pittsburgh: The MIT Press, 2005: 164-169.
  • 4Shehory O, Kraus S. Methods for task allocation via agent coalition formation [J]. Artificial Intelligence, 1998, 101(1/2): 165-200.
  • 5Tosic P, Agha G. Maximal clique based distributed coalition formation for task allocation in large-scale multi-agent systems [C]//Proc of Massively Multi-Agent Systems. Berlin: Springer, 2005: 104-120.
  • 6Aknine S, Shehory O. A feasible and practical coalition formation mechanism leveraging compromise and task relationships [C]//Proc of IEEE/WIC/ACM International Conference on Intelligent Agent Technology. Washington: IEEE Computer Society, 2006: 436-439.
  • 7Weerdt M, Zhang Y Q, Klos T B. Distributed task allocation in social networks [C]//Proc of International Conference on Autonomous Agents and Multiagent Systems. New York: ACM, 2007: 488-495.
  • 8Abdallah S, Lesser V. Modeling task allocation using a decision theoretic model [C]//Proc of International Conference on Autonomous Agents and Multiagent Systems. New York: ACM, 2005: 719-726.
  • 9Manisterski E, David E, Kraus N, et al. Forming efficient agent groups for completing complex tasks [C]//Proc of International Conference on Autonomous Agents and Multiagent Systems. New York: ACM, 2006: 257-264.
  • 10Kitano H, Tadokoro S. RoboCup rescue: a grand challenge for multi-agent systems [J]. AI Magazine, 2001, 22(1): 39-52.

共引文献113

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部