期刊文献+

基于RBIBD的最优局部修复码构造

Construction of Optimal Locally Repairable Codes Based on RBIBD
下载PDF
导出
摘要 随着数据量的迅速增长,对存储海量数据的分布式存储系统的可靠性和有效性的要求日益增加。局部修复码(LRCs)具有良好的修复局部性,能够有效实现海量数据在分布式存储系统中的可靠高效存储,构造具有(r,t)局部性的局部修复码已经成为当前研究的热点。为此,提出了一种基于可分解均衡不完全区组设计(RBIBD)的最优局部修复码的构造方法,构造信息位具有(r,t)局部性的二元最优单校验LRCs。性能分析表明,构造的LRCs达到了最小距离最优边界,且在码率上表现得更优。 With the rapid growth of data,the requirements of the reliability and effectiveness for distributed storage systems are increasing.Locally repairable codes(LRCs)have better locality,which can effectively realize the reliable and efficient storage of massive data in distributed storage system.It has become a research hotspot to construct locally repairable codes with(r,t)locality.Therefore,this paper proposes a construction method of optimal locally repairable codes based on resolvable balanced incomplete block design(RBIBD),which can construct binary optimal single parity LRCs with(r,t)locality of information symbols.The performance analyses show that,the constructed LRCs reach the minimum distance bound,and compared with the LRCs proposed by Xia et al.,the LRCs proposed in this paper perform better in code rate.In particular,when the availability t=2,the LRCs is also the code with the optimal code rate.
作者 王静 李静辉 杨佳蓉 王娥 WANG Jing;LI Jinghui;YANG Jiarong;WANG E(School of Information Engineering,Chang’an University,Xi’an 710064)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2023年第3期366-371,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(62001059) 陕西省重点研发计划(2021GY-019)。
关键词 分布式存储系统 局部修复码 最小距离 均衡不完全区组设计 distributed storage system locally repairable code minimum distance resolvable balanced incomplete block design
  • 相关文献

参考文献2

二级参考文献38

  • 1Layman P, Varian H R. How much information 2003? [EB/OL]. [2010 10-18]. http://www2, sims. berkeley. edu/research/proiects/how-mueh-info-2003.
  • 2Pinheiro E, Weber W D, Barroso L A. Failure trends in a large disk drive population [C] //Proc of the 5th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2007 : 17-28.
  • 3Schroeder B, Gibson G A. Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you? [C] //Proc of the 5th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2007: 1-16.
  • 4Bairavasundaram L N, Goodson G R, Pasupathy S, et al. An analysis of latent sector errors in disk drives [C]//Proc of 2007 ACM SIGMETRICS Int Conf on Measurement and Modeling of Computer Systems. New York: ACM, 200: 289-300.
  • 5Hafner J M, Deenadhayalan V, Rao K, et al. Matrix methods for lost data reconstruction in erasure codes [C] // Proc of the 4th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2005: 183-196.
  • 6Hafner J M, Deenadhayalan V, Kanungo T, et al. Performance metrics for erasure codes in storage systems, RJ 10321 [R]. San Jose, [A] IBM Research, 2004.
  • 7Li M, Shu J, Zheng W. GRID Codes: Strip based erasure codes with high fault tolerance for storage systems [J].ACM Transon Storage, 2009, 4(4): 1-22.
  • 8Blaum M, Brady J, Bruek J, et al. EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures [J].IEEE Trans on Computer, 1995, 44 (2) 192-202.
  • 9Corbett P, English B, Goel A, et al. Row-diagonal redundant for double disk failure correction [C] //Proc of the 3rd USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2004:2-15.
  • 10Xu L, Bruck J. X-code: MDS array codes with optimal encoding[J]. IEEE Trans on Information Theory, 1999, 45 (1) : 272-276.

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部