摘要
通过网络爬虫获取天气数据,并结合金华市用户负荷数据,采用深度随机森林算法对用户负荷进行短期预测。借助4种评价指标,通过对比支持向量回归算法、K近邻算、贝叶斯岭回归算法、随机森林算法以及多个深度神经网络算法,发现深度随机森林算法预测效果最佳,支持向量回归算法次之,而深度神经网络算法在该数据集上表现一般。
By crawling weather data and combining with user load data in Jinhua City,a deep random forest algorithm is introduced to implement short-term user load forecasting.With four evaluation indicators,by comparing the support vector regression algorithm,the K-nearest neighbor algorithm,the Bayesian ridge regression algorithm,the random forest algorithm,and several neural network algorithms,it is found that the deep random forest algorithm has the best performance,and followed by the support vector regression.However,the neural network algorithm performed mediocre on this dataset.
作者
胡兆龙
胡俊建
彭浩
韩建民
朱响斌
丁智国
HU Zhaolong;HU Junjian;PENG Hao;HAN Jianmin;ZHU Xiangbin;DING Zhiguo(School of Computer Science and Technology,Zhejiang Normal University,Jinhua Zhejiang 321004)
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2023年第3期430-437,共8页
Journal of University of Electronic Science and Technology of China
基金
国家自然科学基金(62103375,62072412)
浙江省哲学社会科学规划重点项目(22NDJC009Z)
浙江省自然科学基金(LY23F030003)。
关键词
深度随机森林算法
机器学习
短期负荷预测
天气信息
deep random forest algorithm
machine learning
short-term load forecasting
weather information