期刊文献+

基于有限元仿真技术的轨道车辆锥形弹簧的结构优化研究 被引量:2

Structural Optimization of Conical Spring of Rail Vehicle Based on Finite Element Simulation Technology
下载PDF
导出
摘要 基于有限元仿真技术,对轨道车辆某型号锥形弹簧(以下简称锥形弹簧)的结构进行优化研究。结果表明:Ogden 4阶超弹本构模型分析精度较高,能很好地反映锥形弹簧的橡胶材料的大应变特性;与采用勾形橡胶型面的锥形弹簧相比,采用流线形橡胶型面的锥形弹簧可以避免其橡胶型面出现褶皱现象,消除应力集中点,延长锥形弹簧的疲劳寿命;采用喇叭口式隔板的锥形弹簧,可通过改变喇叭口半径大小灵活实现垂向刚度与横向刚度匹配,从而延长锥形弹簧的疲劳寿命。本研究为锥形弹簧的结构优化提供了新思路。 Based on finite element simulation technology,the structure optimization of a conical spring of rail vehicles(hereinafter referred to as conical spring)was carried out.The results showed that Ogden four-order hyperelastic constitutive model had a high analysis accuracy and could well reflect the large strain characteristics of the rubber material of the conical spring.Compared with the conical spring with hook rubber profile,the conical spring with streamlined profile could prevent the wrinkling of the rubber profile,eliminate the stress concentration points,and extend the fatigue life of the conical spring.The conical spring with bell type diaphragm could flexibly match the vertical stiffness and transverse stiffness by changing the radius of the bell,thus extending the fatigue life of the conical spring.This study provided a new idea for the structure optimization of the conical springs.
作者 常浩 张杨 程海涛 葛琪 CHANG Hao;ZHANG Yang;CHENG Haitao;GE Qi(Hunan Vocational Institute of Safety Technology,Changsha 410151,China;Zhuzhou Times New Material Technology Co.,Ltd,Zhuzhou 412007,China)
出处 《橡胶工业》 CAS 2023年第6期443-450,共8页 China Rubber Industry
基金 湖南省教育厅科学研究项目(22C0753) 湖南安全技术职业学院科研项目(AY22C003)。
关键词 轨道车辆 锥形弹簧 结构优化 流线形型面 喇叭口式隔板 有限元仿真 rail vehicle conical spring structural optimization streamlined profile bell type diaphragm finite element simulation
  • 相关文献

参考文献11

二级参考文献60

  • 1王进,彭立群,侯海彪,林达文.轨道交通用橡胶关节的结构与特性[J].世界橡胶工业,2006,33(8):22-25. 被引量:18
  • 2姚远,张红军,罗赟.转臂轴箱定位节点位置对机车动力学性能影响分析[J].机车电传动,2007(3):27-29. 被引量:17
  • 3李晓芳,杨晓翔.橡胶纯剪试件变形与断裂的有限元分析[J].机械工程学报,2007,43(6):232-238. 被引量:8
  • 4GDOUTOS E E, DANIEL I M, SCHUBEL R Fracture mechanics of rubber[J]. Automatic Control and Robotics, 2003, 3(13): 497-510.
  • 5MARS W V, FATEMI A. Fatigue crack nucleation and growth in filled natural rubber[J]. Fatigue Fract. Engug. Mater. Struct., 2003, 26: 779-789.
  • 6WANG Bo, LU Hongbing, KIM G H. A damage model for the fatigue life of elastomeric materials[J]. Mechanics of Materials, 2002, 34: 475-483.
  • 7AYOUB G; NAIT-ABDELAZIZ M, ZAIRI F, et al. Multiaxial fatigue life prediction of rubber-like materials using the continuum damage mechanics approach[J]. Procedia Engineering, 2010, 2: 985-993.
  • 8TOMITA Y, LU W. Computational characterization of micro-to macroscopic mechanical behavior and damage of polymers containing second-phase particles[J]. International Journal of Damage Mechanics, 2002, 11(2): 129-149.
  • 9LEMAITRE J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Material Technology, 1985, 107(1): 83-89.
  • 10TANG C Y, LEE W B. Damage mechanics applied to elastic properties of polymers[J]. Engineering Fracture Mechanics, 1995, 52(4): 717-729.

共引文献46

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部