期刊文献+

基于时空门控多图卷积网络的网约车需求预测

Research on Demand Prediction of Online Car Reservation Based on Spatio-Temporal Gated Multi-Graph Convolutional Network
下载PDF
导出
摘要 动态的交通需求对于开发有效的实时交通管理和控制策略、算法至关重要。准确预测网约车需求具有一定的挑战性,但对智能交通系统的发展具有重要作用,有助于协调区域内的网约车供需,提高车辆的利用率,为乘客减少等待时间。文章提出一种时空门控多图卷积网络(Spatial-Temporal Gated Multi-Graph Convolutional Network,STGMGCN)模型,使用门控循环单元挖掘时间特征,并研究了三种不同的图卷积网络挖掘空间上的相关性。文章首先使用门控循环(GRU)单元提取研究区域的网约车的需求的时间相关性,之后构建三种不同图结构提取空间特征包括邻近关系图、功能相似性图、交互关系图并对输出结果进行融合,得到最终的预测结果;最后将该研究模型在真实网约车数据集上与基准模型进行对比实验,实验结果表明该模型的预测性能优于其他模型。 Dynamic traffic demand is crucial for developing effective real-time traffic management and control strategies and algorithms.Accurate ride-hailing demand forecasting is challenging but valuable for the development of intelligent transportation systems,which can help coordinate the supply and demand of online vehicles in a region,improve the utilization of vehicles,and reduce the waiting time for passengers.In this paper,we propose a Spatio-Temporal Gated Multi-Graph Convolutional Network(STGMGCN)model that uses gated recurrent units to mine temporal features and three different graph convolutional networks to mine spatial correlations.After that,three different graph structures are constructed to extract spatial features including proximity graph,functional similarity graph,and interaction graph,and the output results are fused to obtain the final prediction results.Finally,the model is compared with the benchmark model on a real online taxi dataset,and the experimental results show that the model outperforms other models.
作者 汤肖 TANG Xiao(Beijing Jiaotong University,Beijing 100044,China)
机构地区 北京交通大学
出处 《物流科技》 2023年第4期92-96,共5页 Logistics Sci-Tech
关键词 网约车需求预测 图卷积网络 门控循环单元 深度学习 online car-hailing demand forecasting graph convolutional network gated recurrent unit deep learning
  • 相关文献

参考文献12

二级参考文献43

  • 1陈浩,陈立辉,毕笃彦,毛柏鑫.BP网络和支持向量机在非线性函数逼近中的应用[J].航空计算技术,2004,34(3):27-30. 被引量:7
  • 2何中胜,刘宗田,庄燕滨.基于数据分区的并行DBSCAN算法[J].小型微型计算机系统,2006,27(1):114-116. 被引量:16
  • 3Smith B L, Demetsky M J. Short-term traffic flow prediction models-A comparison of neural network and nonparametric regression approaches [ A ]. In: Proceedings of IEEE International Conference on Systems [C]. San Antonio, TX, USA: IEEE, 1994. 1706-1709.
  • 4Smith B L, Dem etskym J. Traffic flow forecasting: Comparison of modeling approaches [ J ]. Journal of Transportation Engineering, 1997, 123 (4) : 261-266.
  • 5Smith B L, Oswald R K. Effects of parameter selection on forecast accuracy and execution time in non-parameric regression [ A ]. In: Proceedings of 2000 IEEE Intelligent Transportation Systems Conference [ C ]. Dearborn, MI, USA: IEEE, 2000. 252-257
  • 6张弛.城市交通流计算机微观仿真系统的设计与实现[D].天津:天津大学,1997.
  • 7Sanchez V D.Advanced support vector machines and kernel methods[J].Neurocomputing,2003,55:5-20.
  • 8Nuller K R,Ymola A J,Ratsch G,et al.Predicting time series with support vector machine[C]// Proceedings of ICANN97,1997:999-1004
  • 9Gunn S R.Support vector machine for classification and regression[R].University of Shouthampton,1998.
  • 10Yang H,Chan L,King I.Support vector machine regression for volatile stock market prediction[C]//IDEAL 2002,LNCS 24412:391-396,2002.

共引文献341

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部