期刊文献+

多源数据下的摆线轮磨齿机贝叶斯可靠性评估

Bayesian Reliability Evaluation of Cycloid Gear Grinding Machine Based on Multi-source Data
下载PDF
导出
摘要 在摆线轮磨齿机的可靠性评估中,针对现场试验数据较少的问题,提出考虑先验数据多源性的贝叶斯可靠性评估方法。利用不同样本间的可信度建立混合先验分布,然后采用贝叶斯方法对多源先验信息进行融合,得到的融合信息作为综合先验信息通过结合仿真数据的似然函数,进而得到参数的后验分布。仿真实例表明:通过所提方法得到的MTBF点估计值为997.37,MTBF误差为3.2%,比通过传统贝叶斯方法得到的误差小,且拟合的可靠度曲线与实际情况更贴近,说明了所提方法在磨齿机的可靠度评估上更为精准。 In the reliability evaluation of cycloid gear grinding machine,aiming at the problem of less field test data,a Bayesian reliability evaluation method considering the multi-source of prior data was proposed.A mixed prior distribution was established by using the credibility between different samples,and then the multi-source prior information was fused by using the Bayesian method.The fusion information was used as the integrated prior information by combining a likelihood function of the simulation data,the posterior distribution of the parameters was obtained.The simulation example shows that the MTBF point estimation value obtained by this method is 997.37,and the MTBF error is 3.2%,which is smaller than that obtained by traditional Bayesian method.The fitting reliability curves are closer to the actual conditions,the proposed method is more accurate in the reliability evaluation of the gear grinding machine.
作者 李洁 王会良 苏建新 LI Jie;WANG Huiliang;SU Jianxin(School of Mechatronics Engineering,Henan University of Science and Technology,Luoyang Henan 471003,China;Henan Collaborative Innovation Center for Advanced Manufacturing of Mechanical Equipment,Luoyang Henan 471003,China)
出处 《机床与液压》 北大核心 2023年第9期221-225,232,共6页 Machine Tool & Hydraulics
基金 国家自然科学基金面上项目(51775171) 省级科技研发计划联合基金(科技攻关类)(222103810040) 2023年度河南省高等学校重点科研项目(23A460017)。
关键词 摆线轮磨齿机 多源数据 贝叶斯方法 可靠度 Cycloid gear grinding machine Multi-source data Bayesian method Reliability
  • 相关文献

参考文献5

二级参考文献47

  • 1许彬彬,杨兆军,陈菲,郝庆波,赵宏伟,李国发.非齐次泊松过程的数控机床可靠性建模[J].吉林大学学报(工学版),2011,41(S2):210-214. 被引量:16
  • 2冯守平.平面上有限个点到直线的距离和最小的问题[J].大学数学,2004,20(4):79-83. 被引量:11
  • 3杨娜,叶国铭.机械可靠性定性与定量方法概述[J].机械设计与制造,2006(3):16-18. 被引量:7
  • 4Samanta B,Sarkar B,Mukherjee S K.Reliability assessment of hydraulic shovel system using fault trees[J].Mining Technology,2002,111(2):129-135.
  • 5KELLER A Z,KAMATH A R R,PERERA U D.Reliability analysis of CNC machine tools[J].Reliability Engineering,1982(3):449-473.
  • 6KUO W.An annotated overview of system-reliability optimization[J].IEEE Transactions on Reliability,2000,49(2):176-187.
  • 7WANG Y Q, JIA Y Z, JIANG W W. Early failure analysis of machining centers: A case study [J]. Re- liability Engineering and System Safety, 2001, 72: 91- 97.
  • 8DAI Y, ZHOU Y F, JIA Y Z. Distribution of time between failures of machining center based on type I censored data [J]. Reliability Engineering and System Safety, 2003, 79(3): 375-377.
  • 9GUIDA M, CALABRIA R, PULCINI G. Bayes in- ference {or a non-homogeneous Poisson process with power intensity law [J]. IEEE Trans Reliability, 1989, 38(5): 603-609.
  • 10BARLEV S K, LAVI 1, REISER B. Bayesian infer- ence for the power law process [J]. Ann Inst Statist Math, 1992, 44(4): 623-639.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部