期刊文献+

基于PSO-SVDD的齿轮箱故障诊断

Gearbox Fault Diagnosis Based on PSO-SVDD Algorithm
下载PDF
导出
摘要 针对某热源厂罗茨风机齿轮箱故障诊断中诊断技术难度大,准确率不高的情况。现提出将支持向量数据描述(Support Vector Data Description,SVDD)和粒子群优化算法(Particle Swarm optimization,PSO)相结合来进行齿轮箱设备的故障诊断。分别利用数据采集器采集到的罗茨风机齿轮箱正常状态数据以及特定故障数据构建经PSO算法优化后的SVDD最小超球体模型,用建立好的模型对测试数据进行故障诊断,使诊断结果更加准确。工业应用结果表明:该方法可以有效地处理罗茨风机故障诊断难度大、准确率低的问题,能较好识别已知故障并做出报警处理。 In view of the situation that the diagnosis technology is difficult and the accuracy is not high in the fault diagnosis of the Roots fan gearbox in a heat source factory.Now it is proposed to combine Support Vector Data Description(SVDD)and Particle Swarm optimization(PSO)to diagnose faults of gearbox equipment.The normal state data and specific fault data of the Roots fan gearbox collected by the data collector are used to construct the SVDD minimum super sphere model optimized by the PSO algorithm,and the established model is used to diagnose the test data to make the diagnosis results more accurate.The industrial application results show that this method can effectively deal with the problems of difficulty in diagnosis of roots blower and low accuracy,and can better identify known faults and make alarms.
作者 骆东松 薛鑫 LUO Dongsong;XUE Xin(School of Electrical Engineering and Information Engineering,Lanzhou University of Technology,Lanzhou 730050)
出处 《舰船电子工程》 2023年第2期119-122,共4页 Ship Electronic Engineering
关键词 罗茨风机 故障诊断 SVDD PSO roots blower fault diagnosis SVDD PSO
  • 相关文献

参考文献12

二级参考文献89

  • 1王涛,李艾华,王旭平,蔡艳平.基于SVDD与距离测度的齿轮泵故障诊断方法研究[J].振动与冲击,2013,32(11):62-65. 被引量:9
  • 2孙威,王鹏新,韩丽娟,颜凯,张树誉,李星敏.条件植被温度指数干旱监测方法的完善[J].农业工程学报,2006,22(2):22-26. 被引量:65
  • 3郑恩辉,李平,宋执环.代价敏感支持向量机[J].控制与决策,2006,21(4):473-476. 被引量:33
  • 4杨叔子 丁洪.基于知识的诊断推理[M].北京:清华大学出版社,1992..
  • 5-.机械故障诊断丛书[M].冶金工业出版社,1989-1993..
  • 6百木万博 等.故障诊断、异常诊断及其对策.振动监测、机械振动讲演文集[M].机械工业部郑州机械研究所,1984..
  • 7张瑞林.机械故障诊断技术发展现状及展望.第二届全国机械设备故障诊断学术会议论文集[M].,1988..
  • 8[1]Zhang Siyu,Ganesan R.Multivariable trend analysis for system monitoring through self-organizing neural networks.Trans.of the ASME,Journal of Dynamic Systems,Measurement,and Control,1997,119(2):223~228.
  • 9[7]Fang Zhijun,Zhou Yuanhua,Zou Daowen.Kalman optimized model for MPEG-4 VBR sources.IEEE Transactions on Consumer Electronics,2004,50(2):688 ~ 690.
  • 10[25]Nahvi H,Esfahanian M.Fault identification in rotating machinery using artificial neural networks.Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2005,219(2):141~158.

共引文献214

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部