期刊文献+

基于YOLO v5的工人玩手机行为检测方法研究 被引量:3

Research into Detection Method of Workers Mobile Phone Playing Behavior Based on YOLO v5
下载PDF
导出
摘要 为规范工人生产行为、减少安全事故发生,提出一种监控工人使用手机行为检测算法.该算法以YOLO v5模型为基础,对其网络结构和损失函数进行改进.首先,优化主干网络,将ConvNeXt Block和SPP结构引入浅层网络增加浅层特征的提取;然后,在主干网络与特征聚合网络之间构建CBAM注意力机制层,过滤冗余信息;最后,选取EIoU损失函数代替GIoU损失函数,提高模型收敛速度与检测结果的定位精度.通过自建工人使用手机行为数据集,分别对YOLO v5原模型、改进模型以及主流模型进行对比.试验结果表明,在人体和手机目标检测中,改进模型有更好的检测精度和检测速度. In order to regulate the production behavior of workers and reduce safety accidents,a behavior detection algorithm for monitoring workers using mobile phones is proposed.Based on the YOLO v5 model,this algorithm can be used to improve the network structure and loss function.Firstly,the backbone network is optimized by introducing ConvNeXt Block and SPP structure into the shallow network to increase the extraction of shallow features;secondly,a CBAM attention mechanism layer is constructed between the backbone network and the feature aggregation module to filter redundant information;finally,EIoU loss function is selected to replace the GIoU loss function for improving the convergence speed of the model and the positioning accuracy of the detection results.The original YOLO v5 model,the improved model and the mainstream model are compared by means of workers mobile phone behavior data set collected in this study.The experiments show that the improved model is better in detection accuracy and speed in human and mobile target detection.
作者 林宝华 刘坤 朱一帆 王晓 LIN Baohua;LIU Kun;ZHU Yifan;WANG Xiao(School of Automation,Nanjing Institute of Technology,Nanjing 211167,China)
出处 《南京工程学院学报(自然科学版)》 2023年第1期39-44,共6页 Journal of Nanjing Institute of Technology(Natural Science Edition)
关键词 行为检测 YOLO v5 注意力机制 损失函数 behavior detection YOLO v5 attention mechanism loss function
  • 相关文献

参考文献2

二级参考文献9

  • 1中国机械工程学会.中国机械工程技术路线图[M].北京:中国科学技术出版社,201l:220-232.
  • 2GUO Qing-lin,ZHANG Ming.An agent-oriented approach to resolve scheduling optimization in intelligent manufacturing[J].Robotics and Computer-Integrated Manufacturing,2010(26):39-45.
  • 3罗克韦尔自动化.奥巴马总统的先进制造联盟计划得到今日最新发布报告的支持[EB/OL].http://cn.rockwellautomation.com/news/2011/07_24.html,[2011-07-24].
  • 4Manu Cloud[EB/OL].[2014-03-01].http://www.manucloud-project.eu/.
  • 5JAMES T.Smart factories[J].Engineering and Technology,2012,7(6):64-67.
  • 6EVANS P C,ANNUNZIATA M.工业互联网-打破智慧与机器的边界[R].2013.
  • 7何瑾.智能制造装备业,万亿市场蓝图初现[J].科技智囊,2013(8):38-40. 被引量:5
  • 8宋慧欣.“工业4.0”,制造业未来之路[J].自动化博览,2013,30(10):26-27. 被引量:20
  • 9杜品圣.智能工厂——德国推进工业4.0战略的第一步(上)[J].自动化博览,2014,31(1):22-25. 被引量:31

共引文献126

同被引文献27

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部