期刊文献+

Keldysh型方程在矩形区域上的解的适定性

Well-posedness of Solution of Keldysh Type Equation in the Rectangular Domain
下载PDF
导出
摘要 研究Keldysh型方程在区域Ω={(t_(1),t_(0))×(0,π):t_(1)≤0,t 0>0}上的Dirichlet问题的适定性.当t_(1)=0时,建立退化双曲型方程的解,并得到一个先验加权估计;当t_(1)<0时,在Hadamard's意义下构造混合型方程的一个不连续依赖给定边值的特解.以此说明其Dirichlet问题解的不适定性. In this paper we study Dirichlet problem of an elliptic-hyperbolic Keldysh type equation in the domain{Ω={(t_(1),t_(2))}×(0,π):t_(1)≤0,t 0>0}.For t_(1)=0,we establish the solution of degenerate hyperbolic equation and derive its priori weighted estimate.For t_(1)<0,we show the ill-posedness of Dirichlet problem of mixed type equation in Hadamard’s sense by constructing a counterexample.
作者 张康群 许洲 郁见 ZHANG Kangqun;XU Zhou;YU Jian(School of Mathematics and Physics,Nanjing Institute of Technology,Nanjing 211167,China;Nanjing Foreign Language School,Nanjing 210008,China)
出处 《南京工程学院学报(自然科学版)》 2023年第1期89-92,共4页 Journal of Nanjing Institute of Technology(Natural Science Edition)
基金 江苏省自然科学基金项目(BK20130736) 江苏高校“青蓝工程”。
关键词 Keldysh型方程 DIRICHLET问题 适定性 不适定性 Keldysh type equation Dirichlet problem well-posedness ill-posedness
  • 相关文献

参考文献2

二级参考文献11

  • 1Ehrenpreis L.Solutions of some problems of division I:Part I.Division by a polynomial of derivation. American Journal of Mathematics . 1954
  • 2Malgrange B.Existence et approximation des solutions des equation aux derivees partielles et des equations de convolution. Ann Inst Fourier . 1956
  • 3Erdely A.Higher Transcendental Functions Vol.1-3.Bateman Manuscript Project. . 1955
  • 4Taylor M.Partial Di?erential Equations. . 1996
  • 5Hmander L.The Analysis of Linear Partial Di-erential Operators II. . 1985
  • 6Barros-Neto J,Gelfand I M.Fundamental solutions for the Tricomi operator. Duke Mathematical Journal . 1999
  • 7Barros-Neto J,Gelfand I M.Fundamental solutions for the Tricomi operator II. Duke Mathematical Journal . 2002
  • 8Barros-Neto J,Gelfand I M.Fundamental solutions for the Tricomi operator III. Duke Mathematical Journal . 2005
  • 9Hadamard J.Le probl′eme de Cauchy et les ‘equations aux d′eriv′ees partielles lin′earies hyperboliques. . 1932
  • 10Kang Qun ZHANG.Existence and Regularity of Solution to the Generalized Tricomi Equation with a Singular Initial Datum at a Point[J].Acta Mathematica Sinica,English Series,2012,28(6):1135-1154. 被引量:3

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部