期刊文献+

基于时域和谱峭度特征融合及指数模型的滚动轴承RUL预测 被引量:2

RUL Prediction of Rolling Bearing Based on Fusion Feature of Time Domain and Spectral Kurtosis and Exponential Model
下载PDF
导出
摘要 滚动轴承剩余使用寿命(RUL)预测对保障旋转机械设备平稳运行意义重大。针对时域特征预测精度波动大、数据利用率低等问题,提出一种基于时域和谱峭度特征融合及指数模型的滚动轴承RUL预测方法。从时域和谱峭度提取信号的特征进行平滑处理并基于单调性尺度排序,从而选取优势特征通过主成分分析(PCA)构建健康指标。然后,通过3σ准则确定退化点后对数据再处理。最后,基于贝叶斯理论和极大似然函数估计指数退化模型的参数来预测轴承每时刻的RUL,采用XJTU-SY数据集验证所提方法的有效性。结果表明:所提方法可根据当前观测轴承进行小样本数据潜在信息的挖掘,并能在强噪声背景下准确地表征非平稳信号的退化过程,提升RUL预测的精度。 Prediction of remaining useful life(RUL)of rolling bearings is of great significance to ensure smooth operation of rotating machinery.Aiming at the problems of large fluctuation of prediction accuracy and low data utilization rate of time domain features,a rolling bearing RUL prediction method was proposed based on the fusion feature of time domain and spectral kurtosis and exponential degradation model.The features of signals extracted from time domain and spectrum kurtosis were smoothed and sorted based on monotone scale,and then the dominant features were selected to construct health indicators through principal component analysis(PCA).Then,the degradation point was determined by the 3σcriterion and the data were reprocessed.Finally,the RUL of bearing was predicted at every moment based on Bayesian theory and maximum likelihood function estimation of exponential degradation model parameters.The XJTU-SY dataset were used to verify the effectiveness of the proposed method.The results show that the proposed method can mine potential information of small sample data based on current observation bearings and accurately characterize the degradation process of non-stationary signals under strong noise background,thus improving the prediction accuracy of RUL.
作者 孙丽 赵俊杰 袁春元 彭展 周宏根 任小蝶 李磊 SUN Li;ZHAO Junjie;YUAN Chunyuan;PENG Zhan;ZHOU Honggen;REN Xiaodie;LI Lei(College of Mechanical Engineering,Jiangsu University of Science and Technology,Zhenjiang Jiangsu 212003,China;Department of Control Engineering,Rocket Force Engineering University,Xi'an Shaanxi 710025,China)
出处 《机床与液压》 北大核心 2023年第10期203-209,共7页 Machine Tool & Hydraulics
基金 国家重点研发计划“网络协同制造和智能工厂”专项(2020YFB1712602) 江苏省高等学校基础科学(自然科学)研究面上项目(21KJB510016) 国家自然科学基金(62203193)。
关键词 谱峭度 特征提取 主成分分析 健康指标 寿命预测 Spectral kurtosis Feature extraction Principal component analysis Health indicators Life prediction
  • 相关文献

参考文献5

二级参考文献70

  • 1徐萍,康锐.预测与状态管理系统(PHM)技术研究[J].测控技术,2004,23(12):58-60. 被引量:32
  • 2王平,廖明夫.滚动轴承故障诊断的自适应共振解调技术[J].航空动力学报,2005,20(4):606-612. 被引量:57
  • 3陈刚,廖明夫.基于小波分析的滚动轴承故障诊断研究[J].科学技术与工程,2007,7(12):2810-2814. 被引量:15
  • 4HESS A, FILA L. The joint strike fighter (JSF) PHM Concept: Potential impact on aging aircraft problems[C]. Proceedings of IEEE Aerospace Conference, Big Sky, Montana, USA, 2002, 6: 3021-3026.
  • 5KEITH M J, RAYMOND R B. Diagnostics to Prognostics - A product availability technology evolution[C]. The 53rd Annual Reliability and Maintainability Symposium(RAMS 2007), Orlando, FL, USA, 2007: 113-118.
  • 6NISHAD P, DIGANTA D, GOEBEL K, et al. Identification of Failure Precursor Parameters for Insulated Gate Bipolar Transistors (IGBTs)[C]. 2008 International Conference on Prognostics and Health Management(PHM 2008), Denver, CO, USA, 2008: 1-5.
  • 7ANDREW K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics inplementing condition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006,20: 1483-1510.
  • 8MICHAEL G P.Prognostics and health management of electronics[M]. John Wiley & Sons. Inc., Hoboken, New Jersey, 2008: 3-20.
  • 9ANDREW H, LEO F. The joint strike fighter (JSF) PHM concept: Potential impact on aging aircraft problems[C], Proceedings of IEEE Aerospace Conference, Big Sky, Montana, USA, 2002,6: 3021-3026.
  • 10潘全文 李天 李行善.预测与健康管理系统体系结构研究.电子测量与仪器学报,2007,:32-37.

共引文献448

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部