期刊文献+

乙醇液滴撞击高温壁面蒸发过程的模拟预测研究 被引量:2

Simulation and Prediction of the Evaporation Process of Ethanol Droplets Impacting High Temperature Wall
下载PDF
导出
摘要 采用CLSVOF方法,引入描述壁面润湿特性的动态接触角,建立了乙醇液滴撞击高温壁面的数值模型,对乙醇液滴撞击高温壁面后的沸腾蒸发过程展开了研究,并与实验数据进行了对比验证.研究表明:在相同液滴温度下,壁面温度越高,亲水性越强,乙醇液滴的撞击速度越快,液滴的沸腾时间越早,蒸发完成所用时间也越短.在此研究基础上,基于机器学习算法,建立了液滴蒸发预测模型,对乙醇液滴撞击高温壁面后蒸发剩余量随时间的变化进行了预测研究,并通过将不同机器学习算法的预测结果与模拟结果对比,选出最优预测模型. The coupled level set and volume of fluid(CLSVOF)method was used to establish a numerical mod⁃el for ethanol droplets impacting high temperature wall through introduction of the dynamic contact angle to de⁃scribe the wetting characteristics of the wall surface.The boiling and evaporation process of ethanol droplets impacting high temperature wall was studied and compared with the experimental data.The results show that,at a fixed droplet temperature,the higher the wall temperature is,the stronger the hydrophilicity will be,and the faster the impacting velocity of ethanol droplet is,the earlier the droplet will boil and the shorter the evapo⁃ration time will be.Based on this,a prediction model for droplet evaporation was established with the machine learning algorithm,to study the change of the evaporation residual with time after the ethanol droplet collision with the high temperature wall.The optimal prediction model was selected through comparison of the predic⁃tion results of different machine learning algorithms with the simulation results.
作者 马小晶 周鑫 吐松江·卡日 许瀚文 MA Xiaojing;ZHOU Xin;TUSONGJIANG Kari;XU Hanwen(School of Electrical Engineering,Xinjiang University,Urumqi 830047,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2023年第5期535-542,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金项目(12002296) 新疆维吾尔自治区自然科学基金项目(2022D01C47) 新疆维吾尔自治区重大科技专项(2022A01002-2) 新疆维吾尔自治区天山英才支持项目(2022TSYCCX0054)。
关键词 CLSVOF方法 动态接触角 沸腾蒸发 机器学习 coupled level set and volume of fluid method dynamic contact angle explosive evaporation machine learning
  • 相关文献

参考文献9

二级参考文献41

  • 1朱元举.乙醇水溶液的表面张力模型和表面吸附量计算[J].河南化工,2004,23(12):26-28. 被引量:5
  • 2Kim J-H,Ahn S I,Kim J H,Zin W-C. Evaporation of water droplets on polymer surfaces[J].LANGMUIR,2007,(11):6163-6169.
  • 3Deegan R D,Bakajin O,Dupont T F,Huber G Nagel S R Witten T A. Capillary flow as the cause of ring stains from dried liquid drops[J].NATURE,1997,(6653):827-829.
  • 4Yunker P J,Still T,Lohr M A,Yodh A G. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J].NATURE,2011,(7360):308-311.
  • 5Malaquin L,Kraus T,Schmid H,Delamarche E Wolf H. Controlled particle placement through convective and capillary assembly[J].LANGMUIR,2007,(23):11513-11521.
  • 6Hu H,Larson R G. Evaporation of a sessile droplet on a substrate[J].Journal of Physical Chemistry B,2002,(06):1334-1344.
  • 7Wong T-S,Chen T-H,Shen X,Ho C-M. Nanochromatography driven by the coffee ring effect[J].Analytical Chemistry,2011,(06):1871-1873.
  • 8Brutin D,Zhu Z,Rahli O,Xie J Liu Q Tadrist L. Sessile drop in microgravity:creation,contact angle and interface[J].Microgravity Science and Technology,2009,(01):67-76.
  • 9Cazabat A-M,Guena G. Evaporation of macroscopic sessile droplets[J].SOFT MATTER,2010,(12):2591-2612.
  • 10Gelderblom H,Marín (A) G,Nair H,Van Houselt A Lefferts L Snoeijer J H Lohse D. How water droplets evaporate on a superhydrophobic substrate[J].Physical Review E,2011,(02):026306.

共引文献52

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部