期刊文献+

Applying ionic liquids as oil additives for gearboxes:Going beyond the state of the art by bridging the nano-scale and component level 被引量:1

原文传递
导出
摘要 Ionic liquids(ILs)have been used effectively in many applications for reducing problems related to friction and wear.In this work,the potential of ILs as an anti-wear and extreme pressure lubricant additive for high load-carrying gearbox applications such as helicopter transmissions has been studied.Two halide-free ILs:P_(8881)(BuO)_(2)PO_(2)^(-)(1)and P_(8881)(MeO)_(2)PO_(2)^(-)(2),which are blended at 5 wt%each into a standard non-additivated FVA2 base oil(BO)are examined.Their solid-liquid interface,friction and load-carrying capacity,and wear(scuffing)behavior are studied on the nano-,lab-,and component-scale,respectively,at a different range of temperature and loading conditions by using the atomic force microscopy(AFM),Schwing-Reib-Verschleiβ(SRV)friction tests,and Brugger tests,as well as forschungsstelle für zahnrader und getriebebau(FZG)back-to-back gear test rig.The AFM analysis shows nearly no change of adhesion over the full range of studied temperature for the IL blends compared to the BO.Similarly,IL blends demonstrate a very stable coefficient of friction(COF)of around 0.16,which even decreases with increasing test temperatures ranging from 40 to 120℃.A clear reduction in COF up to 25%is achieved by adding only 5 wt%of the investigated Ils in the BO,and the Brugger tests also show a pronounced enhancement of load-carrying capacity.Finally,on the component-scale,a significant improvement in gear scuffing performance has been observed for both used IL blends.A detailed characterization of the wear tracks from the SRV friction tests via the transmission electron microscopy(TEM)revealed the formation of a phosphate(P-O)-based amorphous tribo-chemical layer of about 20 nm thickness.Therefore,this work may present an approach for Ils to be used as an additive in conventional lubricants due to their ability to enhance the lubrication properties,making them an alternative lubricant solution for high load-carrying gearbox applications.
出处 《Friction》 SCIE EI CAS CSCD 2023年第6期1057-1078,共22页 摩擦(英文版)
基金 funded by the Endowed Professorship on“Tribology”at the Vienna University of Technology(Grant No.WST3-F-5031370/001-2017).
  • 相关文献

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部