摘要
现有的有源配电网可靠性评估方法中,模拟法难以得到确切的指标计算结果,解析法难以处理动态孤岛最优切负荷问题。该文提出一种基于优化模型的有源配电网可靠性评估方法。该方法考虑分布式电源随机性、故障转供以及潮流倒送限制等因素,首先建立分布式电源的多状态模型,并基于后向场景缩减算法对分布式电源出力的随机场景进行状态缩减。针对缩减的特定场景,提出面向可靠性指标评估的混合整数线性规划模型,通过求解该模型,利用寻优的机制得到系统的各类可靠性指标。该方法的主要优点在于便于考虑配电网可靠性与网络规划优化问题的相结合。通过算例分析了该方法的准确性,并通过有源配电网自动、手动开关配置优化问题说明所提方法的延伸应用价值。
Among the existing reliability assessment methods of active distribution networks,a simulation method is difficult to obtain exact index calculation results,and an analytical method is difficult to deal with the optimal load shedding problem of dynamic islands.In this paper,a reliability evaluation method of active distribution networks based on an optimization model is proposed.The method takes into account factors such as the randomness of distributed power supply,fault transfer and power flow reverse restrictions,and firstly establishes a multi-state model of distributed power generation,and based on the backward scenario reduction algorithm,the state of the random scene of distributed power output is analyzed and reduced.Given a specific reduced scenario,a mixed integer linear programming model for reliability index evaluation is proposed.By solving the model,various reliability indexes of the system can be obtained through the optimization mechanism.The main advantage of this method is that it is easy to be combined with network planning and optimization problems considering the reliability of distribution network.The accuracy of the reliability evaluation of the method is analyzed by a numerical example,and the extended application value of the proposed method is illustrated by the optimization problem of automatic and manual switch configuration of active distribution networks.
作者
李阳洋
关轶文
赵佳琪
王越
LI Yangyang;GUAN Yiwen;ZHAO Jiaqi;WANG Yue(College of Information and Electrical Engineering,China Agricultural University,Haidian District,Beijing 100083,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2023年第8期2931-2939,共9页
Proceedings of the CSEE
基金
国家自然科学基金项目(51977210)。
关键词
配电网可靠性
分布式电源
场景缩减
孤岛运行
转供
潮流倒送
distribution network reliability
distributed generation
scenario reduction
island operation
power transfer
power flow reverse