期刊文献+

Semi-supervised 3D shape segmentation with multilevel consistency and part substitution 被引量:1

原文传递
导出
摘要 The lack of fine-grained 3D shape segmentation data is the main obstacle to developing learning-based 3D segmentation techniques.We propose an effective semi-supervised method for learning 3D segmentations from a few labeled 3D shapes and a large amount of unlabeled 3D data.For the unlabeled data,we present a novel multilevel consistency loss to enforce consistency of network predictions between perturbed copies of a 3D shape at multiple levels:point level,part level,and hierarchical level.For the labeled data,we develop a simple yet effective part substitution scheme to augment the labeled 3D shapes with more structural variations to enhance training.Our method has been extensively validated on the task of 3D object semantic segmentation on PartNet and ShapeNetPart,and indoor scene semantic segmentation on ScanNet.It exhibits superior performance to existing semi-supervised and unsupervised pre-training 3D approaches.
出处 《Computational Visual Media》 SCIE EI CSCD 2023年第2期229-247,共19页 计算可视媒体(英文版)
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部