摘要
研究了一类时滞埃博拉病毒传播模型。模型假设感染者死亡后仍然具有一定的传染能力,并且考虑了感染者染病后到死亡所经历的时间周期时滞。首先,以感染者染病后到死亡所经历的时间周期时滞为分岔参数,分析了模型的局部渐近稳定性,计算出模型局部渐近稳定和产生Hopf分岔的时滞关键值。进而借助中心流形法讨论了Hopf分岔的性质。最后利用仿真示例验证了理论结果的正确性。
A delayed Ebola virus transmission model is studied.The proposed model assumes that the infected people still have a certain infectivity after death,and it also considers the time delay due to the period from infection to death of the infected people.Firstly,the local asymptotic stability is analyzed and the crucial value of the time delay for experience of Hopf bifurcation is calculated by taking the time delay due to the period from infection to death of the infected people as the bifurcation parameter.Then,properties of the Hopf bifurcation are discussed with the help of the central manifold method.Eventually,a simulation example is used to verify the correctness of the theoretical results.
作者
张子振
张怡雪
ZHANG Zi-zhen;ZHANG Yi-xue(School of Management Science and Engineering,Anhui University of Finance and Economics,Bengbu 233030,China)
出处
《湖北师范大学学报(自然科学版)》
2023年第2期1-9,共9页
Journal of Hubei Normal University:Natural Science
基金
国家自然科学基金项目(12001001)
安徽省高校自然科学研究重点项目(KJ2021A0486)。