期刊文献+

磷酸铁锂正极材料的缺陷机理与改性技术路径 被引量:1

Defect Mechanism and Modification Technology Path of Lithium Iron Phosphate Cathode Materials
原文传递
导出
摘要 磷酸铁锂(LiFePO_(4),简称LFP)因其良好的安全性、稳定的充放电平台和原料来源广泛等优点,成为当前应用最广泛的正极材料之一。然而,LFP倍率性能较差,且在低温环境下容量大幅衰减,限制了其在动力电池和特殊环境下的应用。本文从多角度分析了LFP存在缺陷的机理,并总结了几种主要的改性技术路径及作用原理。最后,对LFP未来的发展方向提出了相应的展望。 Lithium iron phosphate(LiFePO_(4),LFP for short)is considered to be one of the most promising cathode candidates due to the advantages of good safety,stable charging and discharging platform,and wide source of raw materials.However,LFP has poor rate performance,and its capacity is greatly attenuated in low-temperature environment,which limits its application in power batteries and special environments.In this paper,the mechanism of defects in LFP are analyzed from multiple perspectives,and several main modification technology paths and modification principles are summarized.Finally,this paper puts forward corresponding prospects for the future development direction of LFP.
作者 朱豪飞 王建业 陈柏旭 杨倩鹏 武恒 Zhu Haofei;Wang Jianye;Chen Boxu;Yang Qianpeng;Wu Heng(Qinghai Photovoltaic Industry Innovation Center Co.,Ltd.,State Power Investment Corporation,Xining,810007;Qinghai Huanghe Hydropower Development Co.,Ltd,Xining,810008;School of Energy Power and Mechanical Engineering,North China Electric Power University(Beijing),Beijing,102206;School of Materials Science and Technology,Northwestern Polytechnical University,Xi'an,710072)
出处 《化学通报》 CAS CSCD 北大核心 2023年第5期535-542,共8页 Chemistry
基金 国家重点研发计划项目(2021YFB2400100,2021YFB2400105) 广东省科技计划项目(2019B090905007)资助。
关键词 锂离子电池 磷酸铁锂 缺陷机理 改性策略 Lithium-ion batteries Lithium iron phosphate Mechanism of defect Modification strategy
  • 相关文献

参考文献2

二级参考文献77

  • 1倪江锋,周恒辉,陈继涛,张新祥.金属氧化物掺杂改善LiFePO_4电化学性能[J].无机化学学报,2005,21(4):472-476. 被引量:34
  • 2Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous pre- cipitation technique[ J ]. J Power Sources, 2003, 119 (S1) : 247- 251.
  • 3Delacourt C, Poizot P, Levasseur S, et al. Size effects on car- bon-free LiFePO4 powders [ J ]. Electrochem Solid St, 2006, 9 (7) : A352-A355.
  • 4Gibot P, Casas-Cabanas M, Laffont L, et al. Room-temperature single-phase Li insertion/extraction in nanoscale Li(x) FePO(4) [J]. Nat Mater, 2008, 7(9): 741-747.
  • 5Kim D H, Kim J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties [ J ]. Electrochem Solid St, 2006, 9 (9) : A439-A442.
  • 6Kim J K, Choi J W, Cheruvally G, et al. A modified mechani- cal activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries[ J]. Mater Lett, 2007,61 ( 18 ) : 3822-3825.
  • 7Saravanan K, Reddy M V, Balaya P, et al. Storage performance of LiFePO4 nanoplates[ J ]. J Mater Chem, 2009,19 ( 5 ) : 605- 610.
  • 8Belharouak I, Johnson C, Amine K. Synthesis and electrochemi- cal analysis of vapor-deposited carbon-coated LiFePO4 [ J]. Elec- trochem Commun, 2005, 7(10): 983-988.
  • 9Rogers R E, Clarke G M, Matthew O N, et al. Impact of micro- wave synthesis conditions on the rechargeable capacity of LiCo- PO4 for lithium ion batteries[ J]. J Appl Electrochem, 2013, 43 (3) : 271-278.
  • 10Konarova M, Taniguchi I. Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties [ J]. Powder Technol, 2009, 191 (1-2) : 111-116.

共引文献57

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部