摘要
研究具有未知时滞的二阶多智能体系统的鲁棒包含控制问题,考虑智能体之间同时具有通信延时和自延时,分别在无向拓扑和有向拓扑通信下,获得多智能体系统保持鲁棒包含控制所能允许的最大时滞范围.借助函数的凸分析和非线性规划方法解析地获得了无向图下包含控制所允许的最大时滞范围.对于有向图,通过遗传算法求解非光滑的优化问题获得最大时滞范围的数值解,同时结果可退化为领导-跟随控制所能获得的最大时滞范围.最后,通过仿真例子验证所提出理论和算法的有效性.
We study the robust containment control problem for second-order multi-agent systems with unknown time delays,considering both the agent’s communication delay and inter-agent delay,simultaneously,We derive the maximum delay range for undirected topology and directed topology respectively,such that multi-agent systems can maintain the robust containment.Via the convex analysis and nonlinear programming,the analytic maximum delay range to maintain containment under undirected graphs is derived.For the directed graph,the genetic algorithm is proposed to solve the non-smooth optimizing problem and the numerical values of maximum delay range are obtained.Meanwhile,the results can be reduced to find the maximum delay range of leader-following control.Finally,the effectiveness of the proposed algorithm are verified via the simulations.
作者
李瑶珀
马丹
LI Yao-po;MA Dan(College of Information Science and Engineering,Northeastern University,Shenyang 110004,China)
出处
《控制与决策》
EI
CSCD
北大核心
2023年第5期1345-1351,共7页
Control and Decision
基金
国家自然科学基金项目(61973060)。
关键词
鲁棒包含控制
二阶多智能体系统
时滞
凸分析
遗传算法
robust containment control
second-order multi-agent system
time delays
convex analysis
genetic algorithm