期刊文献+

高维惩罚分位数回归及优化算法

High-dimensional penalized quantile regression and optimization algorithm
下载PDF
导出
摘要 针对具有异常值或离群点的高维数据线性回归模型,提出了一种基于误差函数正则化的惩罚分位数回归的新方法,与经典的L1惩罚方法相比,新方法具有更好的稳健性以及更小的估计偏差和预测误差;为解决分位数损失函数非光滑性与误差函数非凸性所带来的计算挑战,结合迭代再加权L1算法以及ADMM算法,提出了一种有效的IRW-ADMM算法,并对回归系数进行了求解.模拟结果表明,与已有的惩罚分位数回归方法相比,新方法在参数估计和变量选择等方面均具有更好的表现.将新方法应用于核黄素基因数据分析,以证实其有效性和可行性. For linear regression models of high-dimensional data with outliers,a new penalized quantile estimation was proposed based on error function regularization.Compared with classical penalized method,the proposed method had stronger robustness and smaller estimation bias and prediction errors.To solve computational challenges caused by non-smoothness of quantile loss function and non-convexity of error function,an efficient IRW-ADMM algorithm was proposed to obtain numerical solutions of regression coefficients by combining iterative reweighted algorithm and ADMM algorithm.Simulations showed that the proposed method has better performance in terms of parameter estimation and variable selection compared with existing penalized quantile estimators.This method was further applied to riboflavin gene data analysis to confirm its validity and feasibility.
作者 袁攀旭 罗敬宣 岳莉莉 李高荣 YUAN Panxu;LUO Jingxuan;YUE Lili;LI Gaorong(School of Statistics,Beijing Normal University,100875,Beijing,China;School of Statistics and Data Science,Nanjing Audit University,211815,Nanjing,Jiangsu,China)
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期337-349,共13页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(12271046,11971001,12001277) 国家自然科学基金重点资助项目(12131006)。
关键词 高维数据 分位数回归 变量选择 稳健估计 误差函数 IRW-ADMM算法 high-dimensional data quantile regression variable selection robust estimation error function IRW-ADMM algorithm
  • 相关文献

参考文献1

二级参考文献31

  • 1Frisch, R. The logarithmic potential method of convex programming. Technical Report, University Institute of Economics, Oslo, Norwaw 1955.
  • 2Golub, H.G., van der Vorst, H.A. Closer to the solution: iterative linear solvers. I.S. Duff and G.A. Watson(Eds.), The State of the Art in Numerical Analysis, Oxford University Press, Oxford, 63 92 1997.
  • 3Gonzaga. C., Path-following methods for linear programming, SIAM Review, 34:167-224 (1992).
  • 4Gu, C.,Bates, D.M., Chen, Z., Wahba, G. The computation of generalized cross-validation functions through Householder tridiagonalization with applications to the fitting of interaction spline models. SIAM Journal on Matrix Analysis and Applications, 10:457-480 (1989).
  • 5Gupta, A. Recent advances in direct methods for solving unsymmetric sparse systems of linear equations.ACM Trans. Math. Software, 28:301-324 (2002).
  • 6Hansen, M., Kooperberg, C., Sardy, S. Triogram models. Journal of the American Statistical Association,93:101-119 (1998).
  • 7Haunschmid, E.J., Ueberhuber, C.W. Direct Solvers for Sparse Systems. Tech. Report AURORA TR1999-18, Vienna University of Technology, 1999.
  • 8He, X., Ng, P. COBS: qualitatively constrained smoothing via linear programming.Computational Statistics, 14:315-337 (1999).
  • 9He, X., Ng, P., Portnoy, S. Bivariate Quantile Smoothing Splines. J. Royal Stat. Soc., 60:537-550 (1998).
  • 10He, X, Shi, P. Bivariate tensor-product B-splines in a partly linear model. Journal of Multivariate Analysis,58:162-181 (1996).

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部